Do you want to publish a course? Click here

Preresolving categories and derived equivalences

226   0   0.0 ( 0 )
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

It is well known that a resolving subcategory $mathcal{A}$ of an abelian subcategory $mathcal{E}$ induces several derived equivalences: a triangle equivalence $mathbf{D}^-(mathcal{A})to mathbf{D}^-(mathcal{E})$ exists in general and furthermore restricts to a triangle equivalence $mathbf{D}^{mathsf{b}}(mathcal{A})to mathbf{D}^{mathsf{b}}(mathcal{E})$ if $operatorname{res.dim}_{mathcal{A}}(E)<infty$ for any object $Ein mathcal{E}$. If the category $mathcal{E}$ is uniformly bounded, i.e. $operatorname{res.dim}_{mathcal{A}}(mathcal{E})<infty$, one obtains a triangle equivalence $mathbf{D}(mathcal{A})to mathbf{D}(mathcal{E})$. In this paper, we show that all of the above statements hold for preresolving subcategories of (one-sided) exact categories. By passing to a one-sided language, one can remove the assumption that $mathcal{A}subseteq mathcal{E}$ is extension-closed completely from the classical setting, yielding easier criteria and more examples. To illustrate this point, we consider the Isbell category $mathcal{I}$ and show that $mathcal{I}subseteq mathsf{Ab}$ is preresolving but $mathcal{I}$ cannot be realized as an extension-closed subcategory of an exact category. We also consider a criterion given by Keller to produce derived equivalences of fully exact subcategories. We show that this criterion fits into the framework of preresolving subcategories by considering the relative weak idempotent completion of said subcategory.



rate research

Read More

173 - Boris Shoikhet 2013
We prove a version of the Deligne conjecture for $n$-fold monoidal abelian categories $A$ over a field $k$ of characteristic 0, assuming some compatibility and non-degeneracy conditions for $A$. The output of our construction is a weak Leinster $(n,1)$-algebra over $k$, a relaxed version of the concept of Leinster $n$-algebra in $Alg(k)$. The difference between the Leinster original definition and our relaxed one is apparent when $n>1$, for $n=1$ both concepts coincide. We believe that there exists a functor from weak Leinster $(n,1)$-algebras over $k$ to $C(E_{n+1},k)$-algebras, well-defined when $k=mathbb{Q}$, and preserving weak equivalences. For the case $n=1$ such a functor is constructed in [Sh4] by elementary simplicial methods, providing (together with this paper) a complete solution for 1-monoidal abelian categories. Our approach to Deligne conjecture is divided into two parts. The first part, completed in the present paper, provides a construction of a weak Leinster $(n,1)$-algebra over $k$, out of an $n$-fold monoidal $k$-linear abelian category (provided the compatibility and non-degeneracy condition are fulfilled). The second part (still open for $n>1$) is a passage from weak Leinster $(n,1)$-algebras to $C(E_{n+1},k)$-algebras. As an application, we prove that the Gerstenhaber-Schack complex of a Hopf algebra over a field $k$ of characteristic 0 admits a structure of a weak Leinster (2,1)-algebra over $k$ extending the Yoneda structure. It relies on our earlier construction [Sh1] of a 2-fold monoidal structure on the abelian category of tetramodules over a bialgebra.
257 - Wei Ren , Zhongkui Liu 2014
Let $R$ be a commutative noetherian ring with a semi-dualizing module $C$. The Auslander categories with respect to $C$ are related through Foxby equivalence: $xymatrix@C=50pt{mathcal {A}_C(R) ar@<0.4ex>[r]^{Cotimes^{mathbf{L}}_{R} -} & mathcal {B}_C(R) ar@<0.4ex>[l]^{mathbf{R}mathrm{Hom}_{R}(C, -)}}$. We firstly intend to extend the Foxby equivalence to Cartan-Eilenberg complexes. To this end, C-E Auslander categories, C-E $mathcal{W}$ complexes and C-E $mathcal{W}$-Gorenstein complexes are introduced, where $mathcal{W}$ denotes a self-orthogonal class of $R$-modules. Moreover, criteria for finiteness of C-E Gorenstein dimensions of complexes in terms of resolution-free characterizations are considered.
We consider the quotient of an exact or one-sided exact category $mathcal{E}$ by a so-called percolating subcategory $mathcal{A}$. For exact categories, such a quotient is constructed in two steps. Firstly, one localizes $mathcal{E}$ at a suitable class $S_mathcal{A} subseteq operatorname{Mor}(mathcal{E})$ of morphisms. The localization $mathcal{E}[S_mathcal{A}^{-1}]$ need not be an exact category, but will be a one-sided exact category. Secondly, one constructs the exact hull $mathcal{E}{/mkern-6mu/} mathcal{A}$ of $mathcal{E}[S_mathcal{A}^{-1}]$ and shows that this satisfies the 2-universal property of a quotient amongst exact categories. In this paper, we show that this quotient $mathcal{E} to mathcal{E} {/mkern-6mu/} mathcal{A}$ induces a Verdier localization $mathbf{D}^b(mathcal{E}) to mathbf{D}^b(mathcal{E} {/mkern-6mu/} mathcal{A})$ of bounded derived categories. Specifically, (i) we study the derived category of a one-sided exact category, (ii) we show that the localization $mathcal{E} to mathcal{E}[S_mathcal{A}^{-1}]$ induces a Verdier quotient $mathbf{D}^b(mathcal{E}) to mathbf{D}^b(mathcal{E}[S^{-1}_mathcal{A}])$, and (iii) we show that the natural embedding of a one-sided exact category $mathcal{F}$ into its exact hull $overline{mathcal{F}}$ lifts to a derived equivalence $mathbf{D}^b(mathcal{F}) to mathbf{D}^b(overline{mathcal{F}})$. We furthermore show that the Verdier localization is compatible with several enhancements of the bounded derived category, so that the above Verdier localization can be used in the study of localizing invariants, such as non-connective $K$-theory.
118 - Sebastian Thomas 2018
We give a characterisation of functors whose induced functor on the level of localisations is an equivalence and where the isomorphism inverse is induced by some kind of replacements such as projective resolutions or cofibrant replacements.
Given a bounded-above cochain complex of modules over a ring, it is standard to replace it by a projective resolution, and it is classical that doing so can be very useful. Recently, a modified version of this was introduced in triangulated categories other than the derived category of a ring. A triangulated category is emph{approximable} if this modified procedure is possible. Not surprisingly this has proved a powerful tool. For example: the fact that the derived category of a quasi compact, separated scheme is approximable has led to major improvements on old theorems due to Bondal, Van den Bergh and Rouquier. In this article we prove that, under weak hypotheses, the recollement of two approximable triangulated categories is approximable. In particular, this shows many of the triangulated categories that arise in noncommutative algebraic geometry are approximable.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا