Surface band characters of Weyl semimetal candidate material MoTe$_2$ revealed by one-step ARPES theory


Abstract in English

The layered 2D-material MoTe$_2$ in the T$_d$ crystal phase is a semimetal which has theoretically been predicted to possess topologically non-trivial bands corresponding to Weyl fermions. Clear experimental evidence by angle-resolved photoemission spectroscopy (ARPES) is, however, lacking, which calls for a careful examination of the relation between ground state band structure calculations and ARPES intensity plots. Here we report a study of the near Fermi-energy band structure of MoTe$_2$(T$_d$) by means of ARPES measurements, density functional theory, and one-step-model ARPES calculations. Good agreement between theory and experiment is obtained. We analyze the orbital character of the surface bands and its relation to the ARPES polarization dependence. We find that light polarization has a major efect on which bands can be observed by ARPES. For s-polarized light, the ARPES intensity is dominated by subsurface Mo d orbitals, while p-polarized light reveals the bands composed mainly derived from Te p orbitals. Suitable light polarization for observing either electron or hole pocket are determined

Download