No Arabic abstract
The layered 2D-material MoTe$_2$ in the T$_d$ crystal phase is a semimetal which has theoretically been predicted to possess topologically non-trivial bands corresponding to Weyl fermions. Clear experimental evidence by angle-resolved photoemission spectroscopy (ARPES) is, however, lacking, which calls for a careful examination of the relation between ground state band structure calculations and ARPES intensity plots. Here we report a study of the near Fermi-energy band structure of MoTe$_2$(T$_d$) by means of ARPES measurements, density functional theory, and one-step-model ARPES calculations. Good agreement between theory and experiment is obtained. We analyze the orbital character of the surface bands and its relation to the ARPES polarization dependence. We find that light polarization has a major efect on which bands can be observed by ARPES. For s-polarized light, the ARPES intensity is dominated by subsurface Mo d orbitals, while p-polarized light reveals the bands composed mainly derived from Te p orbitals. Suitable light polarization for observing either electron or hole pocket are determined
A Weyl semimetal is a new type of topological quantum phase with intriguing physics near the Weyl nodes. Although the equilibrium state of Weyl semimetals has been investigated, the ultrafast dynamics near the Weyl node in the nonequilibrium state is still missing. Here by performing time and angle resolved photoemission spectroscopy on type-II Weyl semimetal MoTe$_2$, we reveal the dispersion of the unoccupied states and identify the Weyl node at 70 meV above E$_F$. Moreover, by tracking the ultrafast relaxation dynamics near the Weyl node upon photo-excitation with energy, momentum and temporal resolution, two intrinsic recovery timescales are observed, a fast one of 430 fs and a slow one of 4.1 ps, which are associated with hot electron cooling by optical phonon cascade emission and anharmonic decay of hot optical phonons respectively. The electron population shows a metallic response, and the two temperature model fitting of the transient electronic temperature gives an electron-phonon coupling constant of $lambdalangleOmega^2ranglesimeq32$ $textrm{meV}^2$. Our work provides important dynamic information for understanding the relaxation mechanism of a Weyl semimetal and for exploiting potential applications using ultrafast optical control.
In many realistic topological materials, more than one kind of fermions contribute to the electronic bands crossing the Fermi level, leading to various novel phenomena. Here, using momentum-resolved inelastic electron scattering, we investigate the plasmons and their evolution across the phase transition in a type-II Weyl Semimetal MoTe$_2$, in which both Weyl fermions and trivial nonrelativistic fermions contribute to the Fermi surface in the Td phase. One plasmon mode in the 1T phase at high temperature and two plasmon modes in the topological T$_d$ phase at low temperature are observed. Combining with first-priciples calculations, we show that all the plasmon modes are dominated by the interband correlations between the inverted bands of MoTe$_2$. Especially in the T$_d$ phase, since the electronic bands split due to inversion symmetry breaking and spin-orbit coupling, the plasmon modes manifest the interband correlation between the topological Weyl fermions and the trivial nonrelativistic electrons. Our work emphasizes the significance of the interplay between different kinds of carriers in plasmons of topological materials.
Quasiparticle excitations described by the Weyl equation in solids have attracted massive attention in recent years. So far, a wide range of solids have been experimental realized as Weyl semimetals (WSMs). On the other hand, for a compound to display Weyl points it must exhibit either inversion symmetry breaking or time reversal symmetry breaking. Hence, the Weyl fermions are vulnerable to annihilation from structural distortions or lattice imperfections. In the absence of both mirror and inversion symmetry, SrSi2 has been predicted as a robust WSM by recent theoretical works. Here, supported by first-principles calculations, we present systematical angle-resolved photoemission studies of undoped SrSi2 and Ca-doped SrSi2 single crystals. However, our result shows no evidence of the predicted Weyl fermions at the kz = 0 plane, as well as the Fermi arcs on (001) surface. Combined with the first-principles calculations, we suggest that SrSi2 is a topologically trivial semiconductor.
Recently, a new group of layered transition-metal tetra-chalcogenides were proposed, via first principles calculations, to correspond to a new family of Weyl type-II semimetals with promising topological properties in the bulk as well as in the monolayer limit. In this article, we present measurements of the Shubnikov-de Haas (SdH) and de Haas-van Alphen effects under high magnetic fields for the type-II Weyl semimetallic candidate NbIrTe$_{4}$. We find that the angular dependence of the observed Fermi surface extremal cross-sectional areas agree well with our DFT calculations supporting the existence of Weyl type-II points in this material. Although we observe a large and non-saturating magnetoresistivity in NbIrTe$_{4}$ under fields all the way up to 35 T, Hall-effect measurements indicate that NbIrTe$_{4}$ is not a compensated semimetal. The transverse magnetoresistivity displays a four-fold angular dependence akin to the so-called butterfly magnetoresistivity observed in nodal line semimetals. However, we conclude that its field and this unconventional angular-dependence are governed by the topography of the Fermi-surface and the resulting anisotropy in effective masses and in carrier mobilities.
We investigate the surface electronic structures of polar 1T-MoTe2, the Weyl semimetal candidate realized through the nonpolar-polar structural phase transition, by utilizing the laser angle-resolved photoemission spectroscopy (ARPES) combined with first-principles calculations. Two kinds of domains with different surface band dispersions are observed from a single-crystalline sample. The spin-resolved measurements further reveal that the spin polarizations of the surface and the bulk-derived states show the different domain-dependences, indicating the opposite bulk polarity. For both domains, some segment-like band features resembling the Fermi arcs are clearly observed. The patterns of the arcs present the marked contrast between the two domains, respectively agreeing well with the slab calculation of (0 0 1) and (0 0 -1) surfaces. The present result strongly suggests that the Fermi arc connects the identical pair of Weyl nodes on one side of the polar crystal surface, whereas it connects between the different pairs of Weyl nodes on the other side.