Do you want to publish a course? Click here

Transmitter and Receiver Window Designs for Orthogonal Time Frequency Space Modulation

87   0   0.0 ( 0 )
 Added by Zhiqiang Wei
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we investigate the impacts of transmitter and receiver windows on the performance of orthogonal time-frequency space (OTFS) modulation and propose window designs to improve the OTFS channel estimation and data detection performance. In particular, assuming ideal pulse shaping filters at the transceiver, we derive the impacts of windowing on the effective channel and its estimation performance in the delay-Doppler (DD) domain, the total average transmit power and the effective noise covariance matrix. When the channel state information (CSI) is available at the transceiver, we analyze the minimum squared error (MSE) of data detection and propose an optimal transmitter window to minimize the detection MSE. The proposed optimal transmitter window is interpreted as a mercury/water-filling power allocation scheme, where the mercury is firstly filled before pouring water to pre-equalize the TF domain channels. When the CSI is not available at the transmitter but can be estimated at the receiver, we propose to apply a Dolph-Chebyshev (DC) window at either the transmitter or the receiver, which can effectively enhance the sparsity of the effective channel in the DD domain. Thanks to the enhanced DD domain channel sparsity, the channel spread due to the fractional Doppler is significantly reduced, which leads to a lower error floor in both channel estimation and data detection compared with that of rectangular window. Simulation results verify the accuracy of the obtained analytical results and confirm the superiority of the proposed window designs in improving the channel estimation and data detection performance over the conventional rectangular window design.



rate research

Read More

Recently proposed orthogonal time frequency space (OTFS) modulation has been considered as a promising candidate for accommodating various emerging communication and sensing applications in high-mobility environments. In this paper, we propose a novel cross domain iterative detection algorithm to enhance the error performance of OTFS modulation. Different from conventional OTFS detection methods, the proposed algorithm applies basic estimation/detection approaches to both the time domain and delay-Doppler (DD) domain and iteratively updates the extrinsic information from two domains with the unitary transformation. In doing so, the proposed algorithm exploits the time domain channel sparsity and the DD domain symbol constellation constraints. We evaluate the estimation/detection error variance in each domain for each iteration and derive the state evolution to investigate the detection error performance. We show that the performance gain due to iterations comes from the non-Gaussian constellation constraint in the DD domain. More importantly, we prove the proposed algorithm can indeed converge and, in the convergence, the proposed algorithm can achieve almost the same error performance as the maximum-likelihood sequence detection even in the presence of fractional Doppler shifts. Furthermore, the computational complexity associated with the domain transformation is low, thanks to the structure of the discrete Fourier transform (DFT) kernel. Simulation results are consistent with our analysis and demonstrate a significant performance improvement compared to conventional OTFS detection methods.
The orthogonal-time-frequency-space (OTFS) modulation has emerged as a promising modulation scheme for high mobility wireless communications. To harvest the time and frequency diversity promised by OTFS, some promising detectors, especially message passing based ones, have been developed by taking advantage of the sparsity of the channel in the delay-Doppler domain. However, when the number of channel paths is relatively large or fractional Doppler {shifts have} to be considered, the complexity of existing detectors is a concern, and the message passing based detectors may suffer from performance loss due to the short loops involved in message passing. In this work, we investigate the design of OTFS detectors based on the approximate message passing (AMP). In particular, {leveraging the unitary AMP (UAMP), we design new detectors that enjoy} the structure of the channel matrix and allow efficient implementation. In addition, the estimation of noise variance is incorporated into the UAMP-based detectors. Thanks to the robustness of UAMP relative to AMP, the UAMP-based detectors deliver superior performance, and outperform state-of-the-art detectors significantly. We also investigate iterative joint detection and decoding in a coded OTFS system, where the OTFS detectors are integrated into a powerful turbo receiver, leading to considerable performance gains.
Capacity improvement from transmitter and receiver cooperation is investigated in a two-transmitter, two-receiver network with phase fading and full channel state information available at all terminals. The transmitters cooperate by first exchanging messages over an orthogonal transmitter cooperation channel, then encoding jointly with dirty paper coding. The receivers cooperate by using Wyner-Ziv compress-and-forward over an analogous orthogonal receiver cooperation channel. To account for the cost of cooperation, the allocation of network power and bandwidth among the data and cooperation channels is studied. It is shown that transmitter cooperation outperforms receiver cooperation and improves capacity over non-cooperative transmission under most operating conditions when the cooperation channel is strong. However, a weak cooperation channel limits the transmitter cooperation rate; in this case receiver cooperation is more advantageous. Transmitter-and-receiver cooperation offers sizable additional capacity gain over transmitter-only cooperation at low SNR, whereas at high SNR transmitter cooperation alone captures most of the cooperative capacity improvement.
In this paper, we propose a novel integrated sensing and communication (ISAC) transmission framework based on the spatially-spread orthogonal time frequency space (SS-OTFS) modulation by considering the fact that communication channel strengths cannot be directly obtained from radar sensing. We first propose the concept of SS-OTFS modulation, where the key novelty is the angular domain discretization enabled by the spatial-spreading/de-spreading. This discretization gives rise to simple and insightful effective models for both radar sensing and communication, which result in simplified designs for the related estimation and detection problems. In particular, we design simple beam tracking, angle estimation, and power allocation schemes for radar sensing, by utilizing the special structure of the effective radar sensing matrix. Meanwhile, we provide a detailed analysis on the pair-wise error probability (PEP) for communication, which unveils the key conditions for both precoding and power allocation designs. Based on those conditions, we design a symbol-wise precoding scheme for communication based only on the delay, Doppler, and angle estimates from radar sensing, without the a priori knowledge of the communication channel fading coefficients, and also introduce the power allocation for communication. Furthermore, we notice that radar sensing and communication requires different power allocations. Therefore, we discuss the performances of both the radar sensing and communication with different power allocations and show that the power allocation should be designed leaning towards radar sensing in practical scenarios. The effectiveness of the proposed ISAC transmission framework is verified by our numerical results, which also agree with our analysis and discussions.
241 - P. Ma 2008
This paper proposes a joint transmitter-receiver design to minimize the weighted sum power under the post-processing signal-to-interference-and-noise ratio (post-SINR) constraints for all subchannels. Simulation results demonstrate that the algorithm can not only satisfy the post-SINR constraints but also easily adjust the power distribution among the users by changing the weights accordingly. Hence the algorithm can be used to alleviates the adjacent cell interference by reducing the transmitting power to the edge users without performance penalty.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا