No Arabic abstract
We consider the problem of using observational data to estimate the causal effects of linguistic properties. For example, does writing a complaint politely lead to a faster response time? How much will a positive product review increase sales? This paper addresses two technical challenges related to the problem before developing a practical method. First, we formalize the causal quantity of interest as the effect of a writers intent, and establish the assumptions necessary to identify this from observational data. Second, in practice, we only have access to noisy proxies for the linguistic properties of interest -- e.g., predictions from classifiers and lexicons. We propose an estimator for this setting and prove that its bias is bounded when we perform an adjustment for the text. Based on these results, we introduce TextCause, an algorithm for estimating causal effects of linguistic properties. The method leverages (1) distant supervision to improve the quality of noisy proxies, and (2) a pre-trained language model (BERT) to adjust for the text. We show that the proposed method outperforms related approaches when estimating the effect of Amazon review sentiment on semi-simulated sales figures. Finally, we present an applied case study investigating the effects of complaint politeness on bureaucratic response times.
Word embeddings have become a staple of several natural language processing tasks, yet much remains to be understood about their properties. In this work, we analyze word embeddings in terms of their principal components and arrive at a number of novel and counterintuitive observations. In particular, we characterize the utility of variance explained by the principal components as a proxy for downstream performance. Furthermore, through syntactic probing of the principal embedding space, we show that the syntactic information captured by a principal component does not correlate with the amount of variance it explains. Consequently, we investigate the limitations of variance based embedding post-processing and demonstrate that such post-processing is counter-productive in sentence classification and machine translation tasks. Finally, we offer a few precautionary guidelines on applying variance based embedding post-processing and explain why non-isotropic geometry might be integral to word embedding performance.
This paper concerns the intersection of natural language and the physical space around us in which we live, that we observe and/or imagine things within. Many important features of language have spatial connotations, for example, many prepositions (like in, next to, after, on, etc.) are fundamentally spatial. Space is also a key factor of the meanings of many words/phrases/sentences/text, and space is a, if not the key, context for referencing (e.g. pointing) and embodiment. We propose a mechanism for how space and linguistic structure can be made to interact in a matching compositional fashion. Examples include Cartesian space, subway stations, chesspieces on a chess-board, and Penroses staircase. The starting point for our construction is the DisCoCat model of compositional natural language meaning, which we relax to accommodate physical space. We address the issue of having multiple agents/objects in a space, including the case that each agent has different capabilities with respect to that space, e.g., the specific moves each chesspiece can make, or the different velocities one may be able to reach. Once our model is in place, we show how inferences drawing from the structure of physical space can be made. We also how how linguistic model of space can interact with other such models related to our senses and/or embodiment, such as the conceptual spaces of colour, taste and smell, resulting in a rich compositional model of meaning that is close to human experience and embodiment in the world.
In this work, we propose a computational framework in which agents equipped with communication capabilities simultaneously play a series of referential games, where agents are trained using deep reinforcement learning. We demonstrate that the framework mirrors linguistic phenomena observed in natural language: i) the outcome of contact between communities is a function of inter- and intra-group connectivity; ii) linguistic contact either converges to the majority protocol, or in balanced cases leads to novel creole languages of lower complexity; and iii) a linguistic continuum emerges where neighboring languages are more mutually intelligible than farther removed languages. We conclude that intricate properties of language evolution need not depend on complex evolved linguistic capabilities, but can emerge from simple social exchanges between perceptually-enabled agents playing communication games.
Statistical methods applied to social media posts shed light on the dynamics of online dialogue. For example, users wording choices predict their persuasiveness and users adopt the language patterns of other dialogue participants. In this paper, we estimate the causal effect of reply tones in debates on linguistic and sentiment changes in subsequent responses. The challenge for this estimation is that a replys tone and subsequent responses are confounded by the users ideologies on the debate topic and their emotions. To overcome this challenge, we learn representations of ideology using generative models of text. We study debates from 4Forums and compare annotated tones of replying such as emotional versus factual, or reasonable versus attacking. We show that our latent confounder representation reduces bias in ATE estimation. Our results suggest that factual and asserting tones affect dialogue and provide a methodology for estimating causal effects from text.
In this paper, we present CogNet, a knowledge base (KB) dedicated to integrating three types of knowledge: (1) linguistic knowledge from FrameNet, which schematically describes situations, objects and events. (2) world knowledge from YAGO, Freebase, DBpedia and Wikidata, which provides explicit knowledge about specific instances. (3) commonsense knowledge from ConceptNet, which describes implicit general facts. To model these different types of knowledge consistently, we introduce a three-level unified frame-styled representation architecture. To integrate free-form commonsense knowledge with other structured knowledge, we propose a strategy that combines automated labeling and crowdsourced annotation. At present, CogNet integrates 1,000+ semantic frames from linguistic KBs, 20,000,000+ frame instances from world KBs, as well as 90,000+ commonsense assertions from commonsense KBs. All these data can be easily queried and explored on our online platform, and free to download in RDF format for utilization under a CC-BY-SA 4.0 license. The demo and data are available at http://cognet.top/.