Do you want to publish a course? Click here

ShiftAddNet: A Hardware-Inspired Deep Network

338   0   0.0 ( 0 )
 Added by Haoran You
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Multiplication (e.g., convolution) is arguably a cornerstone of modern deep neural networks (DNNs). However, intensive multiplications cause expensive resource costs that challenge DNNs deployment on resource-constrained edge devices, driving several attempts for multiplication-less deep networks. This paper presented ShiftAddNet, whose main inspiration is drawn from a common practice in energy-efficient hardware implementation, that is, multiplication can be instead performed with additions and logical bit-shifts. We leverage this idea to explicitly parameterize deep networks in this way, yielding a new type of deep network that involves only bit-shift and additive weight layers. This hardware-inspired ShiftAddNet immediately leads to both energy-efficient inference and training, without compromising the expressive capacity compared to standard DNNs. The two complementary operation types (bit-shift and add) additionally enable finer-grained control of the models learning capacity, leading to more flexible trade-off between accuracy and (training) efficiency, as well as improved robustness to quantization and pruning. We conduct extensive experiments and ablation studies, all backed up by our FPGA-based ShiftAddNet implementation and energy measurements. Compared to existing DNNs or other multiplication-less models, ShiftAddNet aggressively reduces over 80% hardware-quantified energy cost of DNNs training and inference, while offering comparable or better accuracies. Codes and pre-trained models are available at https://github.com/RICE-EIC/ShiftAddNet.

rate research

Read More

62 - Armin Runge 2020
The widespread use of Deep Learning (DL) applications in science and industry has created a large demand for efficient inference systems. This has resulted in a rapid increase of available Hardware Accelerators (HWAs) making comparison challenging and laborious. To address this, several DL hardware benchmarks have been proposed aiming at a comprehensive comparison for many models, tasks, and hardware platforms. Here, we present our DL hardware benchmark which has been specifically developed for inference on embedded HWAs and tasks required for autonomous driving. In addition to previous benchmarks, we propose a new granularity level to evaluate common submodules of DL models, a twofold benchmark procedure that accounts for hardware and model optimizations done by HWA manufacturers, and an extended set of performance indicators that can help to identify a mismatch between a HWA and the DL models used in our benchmark.
Specialized Deep Learning (DL) acceleration stacks, designed for a specific set of frameworks, model architectures, operators, and data types, offer the allure of high performance while sacrificing flexibility. Changes in algorithms, models, operators, or numerical systems threaten the viability of specialized hardware accelerators. We propose VTA, a programmable deep learning architecture template designed to be extensible in the face of evolving workloads. VTA achieves this flexibility via a parametrizable architecture, two-level ISA, and a JIT compiler. The two-level ISA is based on (1) a task-ISA that explicitly orchestrates concurrent compute and memory tasks and (2) a microcode-ISA which implements a wide variety of operators with single-cycle tensor-tensor operations. Next, we propose a runtime system equipped with a JIT compiler for flexible code-generation and heterogeneous execution that enables effective use of the VTA architecture. VTA is integrated and open-sourced into Apache TVM, a state-of-the-art deep learning compilation stack that provides flexibility for diverse models and divergent hardware backends. We propose a flow that performs design space exploration to generate a customized hardware architecture and software operator library that can be leveraged by mainstream learning frameworks. We demonstrate our approach by deploying optimized deep learning models used for object classification and style transfer on edge-class FPGAs.
In this paper, a novel training paradigm inspired by quantum computation is proposed for deep reinforcement learning (DRL) with experience replay. In contrast to traditional experience replay mechanism in DRL, the proposed deep reinforcement learning with quantum-inspired experience replay (DRL-QER) adaptively chooses experiences from the replay buffer according to the complexity and the replayed times of each experience (also called transition), to achieve a balance between exploration and exploitation. In DRL-QER, transitions are first formulated in quantum representations, and then the preparation operation and the depreciation operation are performed on the transitions. In this progress, the preparation operation reflects the relationship between the temporal difference errors (TD-errors) and the importance of the experiences, while the depreciation operation is taken into account to ensure the diversity of the transitions. The experimental results on Atari 2600 games show that DRL-QER outperforms state-of-the-art algorithms such as DRL-PER and DCRL on most of these games with improved training efficiency, and is also applicable to such memory-based DRL approaches as double network and dueling network.
Convolutional Neural Networks (CNNs) have become common in many fields including computer vision, speech recognition, and natural language processing. Although CNN hardware accelerators are already included as part of many SoC architectures, the task of achieving high accuracy on resource-restricted devices is still considered challenging, mainly due to the vast number of design parameters that need to be balanced to achieve an efficient solution. Quantization techniques, when applied to the network parameters, lead to a reduction of power and area and may also change the ratio between communication and computation. As a result, some algorithmic solutions may suffer from lack of memory bandwidth or computational resources and fail to achieve the expected performance due to hardware constraints. Thus, the system designer and the micro-architect need to understand at early development stages the impact of their high-level decisions (e.g., the architecture of the CNN and the amount of bits used to represent its parameters) on the final product (e.g., the expected power saving, area, and accuracy). Unfortunately, existing tools fall short of supporting such decisions. This paper introduces a hardware-aware complexity metric that aims to assist the system designer of the neural network architectures, through the entire project lifetime (especially at its early stages) by predicting the impact of architectural and micro-architectural decisions on the final product. We demonstrate how the proposed metric can help evaluate different design alternatives of neural network models on resource-restricted devices such as real-time embedded systems, and to avoid making design mistakes at early stages.
98 - Xin He , Liu Ke , Wenyan Lu 2018
The intrinsic error tolerance of neural network (NN) makes approximate computing a promising technique to improve the energy efficiency of NN inference. Conventional approximate computing focuses on balancing the efficiency-accuracy trade-off for existing pre-trained networks, which can lead to suboptimal solutions. In this paper, we propose AxTrain, a hardware-oriented training framework to facilitate approximate computing for NN inference. Specifically, AxTrain leverages the synergy between two orthogonal methods---one actively searches for a network parameters distribution with high error tolerance, and the other passively learns resilient weights by numerically incorporating the noise distributions of the approximate hardware in the forward pass during the training phase. Experimental results from various datasets with near-threshold computing and approximation multiplication strategies demonstrate AxTrains ability to obtain resilient neural network parameters and system energy efficiency improvement.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا