Do you want to publish a course? Click here

Robust Document Representations using Latent Topics and Metadata

68   0   0.0 ( 0 )
 Added by Armineh Nourbakhsh
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Task specific fine-tuning of a pre-trained neural language model using a custom softmax output layer is the de facto approach of late when dealing with document classification problems. This technique is not adequate when labeled examples are not available at training time and when the metadata artifacts in a document must be exploited. We address these challenges by generating document representations that capture both text and metadata artifacts in a task agnostic manner. Instead of traditional auto-regressive or auto-encoding based training, our novel self-supervised approach learns a soft-partition of the input space when generating text embeddings. Specifically, we employ a pre-learned topic model distribution as surrogate labels and construct a loss function based on KL divergence. Our solution also incorporates metadata explicitly rather than just augmenting them with text. The generated document embeddings exhibit compositional characteristics and are directly used by downstream classification tasks to create decision boundaries from a small number of labeled examples, thereby eschewing complicated recognition methods. We demonstrate through extensive evaluation that our proposed cross-model fusion solution outperforms several competitive baselines on multiple datasets.



rate research

Read More

139 - Bei Shi , Wai Lam , Shoaib Jameel 2017
Word embedding models such as Skip-gram learn a vector-space representation for each word, based on the local word collocation patterns that are observed in a text corpus. Latent topic models, on the other hand, take a more global view, looking at the word distributions across the corpus to assign a topic to each word occurrence. These two paradigms are complementary in how they represent the meaning of word occurrences. While some previous works have already looked at using word embeddings for improving the quality of latent topics, and conversely, at using latent topics for improving word embeddings, such two-step methods cannot capture the mutual interaction between the two paradigms. In this paper, we propose STE, a framework which can learn word embeddings and latent topics in a unified manner. STE naturally obtains topic-specific word embeddings, and thus addresses the issue of polysemy. At the same time, it also learns the term distributions of the topics, and the topic distributions of the documents. Our experimental results demonstrate that the STE model can indeed generate useful topic-specific word embeddings and coherent latent topics in an effective and efficient way.
83 - Jialu Liu , Tianqi Liu , Cong Yu 2021
Effectively modeling text-rich fresh content such as news articles at document-level is a challenging problem. To ensure a content-based model generalize well to a broad range of applications, it is critical to have a training dataset that is large beyond the scale of human labels while achieving desired quality. In this work, we address those two challenges by proposing a novel approach to mine semantically-relevant fresh documents, and their topic labels, with little human supervision. Meanwhile, we design a multitask model called NewsEmbed that alternatively trains a contrastive learning with a multi-label classification to derive a universal document encoder. We show that the proposed approach can provide billions of high quality organic training examples and can be naturally extended to multilingual setting where texts in different languages are encoded in the same semantic space. We experimentally demonstrate NewsEmbeds competitive performance across multiple natural language understanding tasks, both supervised and unsupervised.
234 - Damai Dai , Jing Ren , Shuang Zeng 2020
Document-level Relation Extraction (RE) requires extracting relations expressed within and across sentences. Recent works show that graph-based methods, usually constructing a document-level graph that captures document-aware interactions, can obtain useful entity representations thus helping tackle document-level RE. These methods either focus more on the entire graph, or pay more attention to a part of the graph, e.g., paths between the target entity pair. However, we find that document-level RE may benefit from focusing on both of them simultaneously. Therefore, to obtain more comprehensive entity representations, we propose the Coarse-to-Fine Entity Representation model (CFER) that adopts a coarse-to-fine strategy involving two phases. First, CFER uses graph neural networks to integrate global information in the entire graph at a coarse level. Next, CFER utilizes the global information as a guidance to selectively aggregate path information between the target entity pair at a fine level. In classification, we combine the entity representations from both two levels into more comprehensive representations for relation extraction. Experimental results on two document-level RE datasets, DocRED and CDR, show that CFER outperforms existing models and is robust to the uneven label distribution.
Words are polysemous and multi-faceted, with many shades of meanings. We suggest that sparse distributed representations are more suitable than other, commonly used, (dense) representations to express these multiple facets, and present Category Builder, a working system that, as we show, makes use of sparse representations to support multi-faceted lexical representations. We argue that the set expansion task is well suited to study these meaning distinctions since a word may belong to multiple sets with a different reason for membership in each. We therefore exhibit the performance of Category Builder on this task, while showing that our representation captures at the same time analogy problems such as the Ganga of Egypt or the Voldemort of Tolkien. Category Builder is shown to be a more expressive lexical representation and to outperform dense representations such as Word2Vec in some analogy classes despite being shown only two of the three input terms.
We present a feature vector formation technique for documents - Sparse Composite Document Vector (SCDV) - which overcomes several shortcomings of the current distributional paragraph vector representations that are widely used for text representation. In SCDV, word embeddings are clustered to capture multiple semantic contexts in which words occur. They are then chained together to form document topic-vectors that can express complex, multi-topic documents. Through extensive experiments on multi-class and multi-label classification tasks, we outperform the previous state-of-the-art method, NTSG (Liu et al., 2015a). We also show that SCDV embeddings perform well on heterogeneous tasks like Topic Coherence, context-sensitive Learning and Information Retrieval. Moreover, we achieve significant reduction in training and prediction times compared to other representation methods. SCDV achieves best of both worlds - better performance with lower time and space complexity.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا