Do you want to publish a course? Click here

On the quantumness of multiparameter estimation problems for qubit systems

85   0   0.0 ( 0 )
 Added by Sholeh Razavian
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The estimation of more than one parameter in quantum mechanics is a fundamental problem with relevant practical applications. In fact, the ultimate limits in the achievable estimation precision are ultimately linked with the non-commutativity of different observables, a peculiar property of quantum mechanics. We here consider several estimation problems for qubit systems and evaluate the corresponding quantumness R, a measure that has been recently introduced in order to quantify how much incompatible are the parameters to be estimated. In particular, R is an upper bound for the renormalized difference between the (asymptotically achievable) Holevo bound and the SLD Cramer-Rao bound (i.e. the matrix generalization of the single-parameter quantum Cramer-Rao bound). For all the estimation problems considered, we evaluate the quantumness R and, in order to better understand its usefulness in characterizing a multiparameter quantum statistical model, we compare it with the renormalized difference between the Holevo and the SLD-bound. Our results give evidence that R is a useful quantity to characterize multiparameter estimation problems, as for several quantum statistical model it is equal to the difference between the bounds and, in general, their behaviour qualitatively coincide. On the other hand, we also find evidence that for certain quantum statistical models the bound is not in tight, and thus R may overestimate the degree of quantum incompatibility between parameters.



rate research

Read More

89 - Sk Sazim , Pankaj Agrawal 2016
We introduce a new information theoretic measure of quantum correlations for multiparticle systems. We use a form of multivariate mutual information -- the interaction information and generalize it to multiparticle quantum systems. There are a number of different possible generalizations. We consider two of them. One of them is related to the notion of quantum discord and the other to the concept of quantum dissension. This new measure, called dissension vector, is a set of numbers -- quantumness vector. This can be thought of as a fine-grained measure, as opposed to measures that quantify some average quantum properties of a system. These quantities quantify/characterize the correlations present in multiparticle states. We consider some multiqubit states and find that these quantities are responsive to different aspects of quantumness, and correlations present in a state. We find that different dissension vectors can track the correlations (both classical and quantum), or quantumness only. As physical applications, we find that these vectors might be useful in several information processing tasks. We consider the role of dissension vectors -- (a) in deciding the security of BB84 protocol against an eavesdropper and (b) in determining the possible role of correlations in the performance of Grover search algorithm. Especially, in the Grover search algorithm, we find that dissension vectors can detect the correlations and show the maximum correlations when one expects.
In this article we derive a measure of quantumness in quantum multi-parameter estimation problems. We can show that the ratio between the mean Uhlmann Curvature and the Fisher Information provides a figure of merit which estimates the amount of incompatibility arising from the quantum nature of the underlying physical system. This ratio accounts for the discrepancy between the attainable precision in the simultaneous estimation of multiple parameters and the precision predicted by the Cramer-Rao bound. As a testbed for this concept, we consider a quantum many-body system in thermal equilibrium, and explore the quantum compatibility of the model across its phase diagram.
It was suggested in Ref. [Phys. Rev. Lett. 114, 170802] that optical networks with relatively inexpensive overhead---single photon Fock states, passive optical elements, and single photon detection---can show significant improvements over classical strategies for single-parameter estimation, when the number of modes in the network is small (n < 7). A similar case was made in Ref. [Phys. Rev. Lett. 111, 070403] for multi-parameter estimation, where measurement is instead made using photon-number resolving detectors. In this paper, we analytically compute the quantum Cramer-Rao bound to show these networks can have a constant-factor quantum advantage in multi-parameter estimation for even large number of modes. Additionally, we provide a simplified measurement scheme using only single-photon (on-off) detectors that is capable of approximately obtaining this sensitivity for a small number of modes.
We address the use of asymptotic incompatibility (AI) to assess the quantumness of a multiparameter quantum statistical model. AI is a recently introduced measure which quantifies the difference between the Holevo and the SLD scalar bounds, and can be evaluated using only the symmetric logarithmic derivative (SLD) operators of the model. At first, we evaluate analytically the AI of the most general quantum statistical models involving two-level (qubit) and single-mode Gaussian continuous-variable quantum systems, and prove that AI is a simple monotonous function of the state purity. Then, we numerically investigate the same problem for qudits ($d$-dimensional quantum systems, with $2 < d leq 4$), showing that, while in general AI is not in general a function of purity, we have enough numerical evidence to conclude that the maximum amount of AI is achievable only for quantum statistical models characterized by a purity larger than $mu_{sf min} = 1/(d-1)$. In addition, by parametrizing qudit states as thermal (Gibbs) states, numerical results suggest that, once the spectrum of the Hamiltonian is fixed, the AI measure is in one-to-one correspondence with the fictitious temperature parameter $beta$ characterizing the family of density operators. Finally, by studying in detail the definition and properties of the AI measure we find that: i) given a quantum statistical model, one can readily identify the maximum number of asymptotically compatibile parameters; ii) the AI of a quantum statistical model bounds from above the AI of any sub-model that can be defined by fixing one or more of the original unknown parameters (or functions thereof), leading to possibly useful bounds on the AI of models involving noisy quantum dynamics.
Simultaneous quantum estimation of multiple parameters has recently become essential in quantum metrology. Although the ultimate sensitivity of a multiparameter quantum estimation in noiseless environments can beat the standard quantum limit that every classical sensor is bounded by, it is unclear whether the quantum sensor has an advantage over the classical one under realistic noise. In this work, we present a framework of the simultaneous estimation of multiple parameters with quantum sensors in a certain noisy environment. Our multiple parameters to be estimated are three components of an external magnetic field, and we consider the noise that causes only dephasing. We show that there is an optimal sensing time in the noisy environment and the sensitivity can beat the standard quantum limit when the noisy environment is non-Markovian.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا