Do you want to publish a course? Click here

A luminous X-ray transient in SDSS J143359.16+400636.0: a likely tidal disruption event

77   0   0.0 ( 0 )
 Added by Murray Brightman
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the discovery of a luminous X-ray transient, serendipitously detected by Swifts X-ray Telescope (XRT) on 2020 February 5, located in the nucleus of the galaxy SDSS J143359.16+400636.0 at z=0.099 (luminosity distance $D_{rm L}=456$ Mpc). The transient was observed to reach a peak luminosity of $sim10^{44}$ erg s$^{-1}$ in the 0.3--10 keV X-ray band, which was $sim20$ times more than the peak optical/UV luminosity. Optical, UV, and X-ray lightcurves from the Zwicky Transient Facility (ZTF) and Swift show a decline in flux from the source consistent with $t^{-5/3}$, and observations with NuSTAR and Chandra show a soft X-ray spectrum with photon index $Gamma=2.9pm0.1$. The X-ray/UV properties are inconsistent with well known AGN properties and have more in common with known X-ray tidal disruption events (TDE), leading us to conclude that it was likely a TDE. The broadband spectral energy distribution (SED) can be described well by a disk blackbody model with an inner disk temperature of $7.3^{+0.3}_{-0.8}times10^{5}$ K, with a large fraction ($>40$%) of the disk emission up-scattered into the X-ray band. An optical spectrum taken with Keck/LRIS after the X-ray detection reveals LINER line ratios in the host galaxy, suggesting low-level accretion on to the supermassive black hole prior to the event, but no broad lines or other indications of a TDE were seen. The stellar velocity dispersion implies the mass of the supermassive black hole powering the event is log($M_{rm BH}$/$M_{odot}$)$=7.41pm0.41$, and we estimate that at peak the Eddington fraction of this event was $sim$50%. This likely TDE was not identified by wide-field optical surveys, nor optical spectroscopy, indicating that more events like this would be missed without wide-field UV or X-ray surveys.



rate research

Read More

Multiwavelength flares from tidal disruption and accretion of stars can be used to find and study otherwise dormant massive black holes in galactic nuclei. Previous well-monitored candidate flares are short-lived, with most emission confined to within ~1 year. Here we report the discovery of a well observed super-long (>11 years) luminous soft X-ray flare from the nuclear region of a dwarf starburst galaxy. After an apparently fast rise within ~4 months a decade ago, the X-ray luminosity, though showing a weak trend of decay, has been persistently high at around the Eddington limit (when the radiation pressure balances the gravitational force). The X-ray spectra are generally soft (steeply declining towards higher energies) and can be described with Comptonized emission from an optically thick low-temperature corona, a super-Eddington accretion signature often observed in accreting stellar-mass black holes. Dramatic spectral softening was also caught in one recent observation, implying either a temporary transition from the super-Eddington accretion state to the standard thermal state or the presence of a transient highly blueshifted (~0.36c) warm absorber. All these properties in concert suggest a tidal disruption event of an unusually long super-Eddington accretion phase that has never been observed before.
209 - J. Vinko , F. Yuan , R. M. Quimby 2014
We present follow-up observations of an optical transient (OT) discovered by ROTSE on Jan. 21, 2009. Photometric monitoring was carried out with ROTSE-IIIb in the optical and Swift in the UV up to +70 days after discovery. The light curve showed a fast rise time of ~10 days followed by a steep decline over the next 60 days, which was much faster than that implied by 56Ni - 56Co radioactive decay. The SDSS DR10 database contains a faint, red object at the position of the OT, which appears slightly extended. This and other lines of evidence suggest that the OT is of extragalactic origin, and this faint object is likely the host galaxy. A sequence of optical spectra obtained with the 9.2-m Hobby-Eberly Telescope (HET) between +8 and +45 days after discovery revealed a hot, blue continuum with no visible spectral features. A few weak features that appeared after +30 days probably originated from the underlying host. Fitting synthetic templates to the observed spectrum of the host galaxy revealed a redshift of z = 0.19. At this redshift the peak magnitude of the OT is close to -22.5, similar to the brightest super-luminous supernovae; however, the lack of identifiable spectral features makes the massive stellar death hypothesis less likely. A more plausible explanation appears to be the tidal disruption of a sun-like star by the central super-massive black hole. We argue that this transient likely belongs to a class of super-Eddington tidal disruption events.
We report on the discovery of an ultrasoft X-ray transient source, 3XMM J152130.7+074916. It was serendipitously detected in an XMM-Newton observation on 2000 August 23, and its location is consistent with the center of the galaxy SDSS J152130.72+074916.5 (z=0.17901 and d_L=866 Mpc). The high-quality X-ray spectrum can be fitted with a thermal disk with an apparent inner disk temperature of 0.17 keV and a rest-frame 0.24-11.8 keV unabsorbed luminosity of ~5e43 erg/s, subject to a fast-moving warm absorber. Short-term variability was also clearly observed, with the spectrum being softer at lower flux. The source was covered but not detected in a Chandra observation on 2000 April 3, a Swift observation on 2005 September 10, and a second XMM-Newton observation on 2014 January 19, implying a large variability (>260) of the X-ray flux. The optical spectrum of the candidate host galaxy, taken ~11 yrs after the XMM-Newton detection, shows no sign of nuclear activity. This, combined with its transient and ultrasoft properties, leads us to explain the source as tidal disruption of a star by the supermassive black hole in the galactic center. We attribute the fast-moving warm absorber detected in the first XMM-Newton observation to the super-Eddington outflow associated with the event and the short-term variability to a disk instability that caused fast change of the inner disk radius at a constant mass accretion rate.
When a star passes within the tidal radius of a supermassive black hole, it will be torn apart. For a star with the mass of the Sun ($M_odot$) and a non-spinning black hole with a mass $<10^8 M_odot$, the tidal radius lies outside the black hole event horizon and the disruption results in a luminous flare. Here we report observations over a period of 10 months of a transient, hitherto interpreted as a superluminous supernova. Our data show that the transient rebrightened substantially in the ultraviolet and that the spectrum went through three different spectroscopic phases without ever becoming nebular. Our observations are more consistent with a tidal disruption event than a superluminous supernova because of the temperature evolution, the presence of highly ionised CNO gas in the line of sight and our improved localisation of the transient in the nucleus of a passive galaxy, where the presence of massive stars is highly unlikely. While the supermassive black hole has a mass $> 10^8 M_odot$, a star with the same mass as the Sun could be disrupted outside the event horizon if the black hole were spinning rapidly. The rapid spin and high black hole mass can explain the high luminosity of this event.
129 - Dacheng Lin 2017
The X-ray source 2XMM J123103.2+110648 was previously found to show pure thermal X-ray spectra and a ~3.8 hr periodicity in three XMM-Newton X-ray observations in 2003-2005, and the optical spectrum of the host galaxy suggested it as a type 2 active galactic nucleus candidate. We have obtained new X-ray observations of the source, with Swift and Chandra in 2013-2016, in order to shed new light on its nature based on its long-term evolution property. We found that the source could be in an X-ray outburst, with the X-ray flux decreasing by an order of magnitude in the Swift and Chandra observations, compared with the XMM-Newton observations ten years ago. There seemed to be significant spectral softening associated with the drop of X-ray flux (disk temperature kT ~ 0.16-0.2 keV in XMM-Newton observations versus kT~0.09+-0.02 keV in the Chandra observation. Therefore the Swift and Chandra follow-up observations support our previous suggestion that the source could be a tidal disruption event (TDE), though it seems to evolve slower than most of the other TDE candidates. The apparent long duration of this event could be due to the presence of a long super-Eddington accretion phase and/or slow circularization.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا