Do you want to publish a course? Click here

Neural Passage Retrieval with Improved Negative Contrast

92   0   0.0 ( 0 )
 Added by Yinfei Yang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper we explore the effects of negative sampling in dual encoder models used to retrieve passages for automatic question answering. We explore four negative sampling strategies that complement the straightforward random sampling of negatives, typically used to train dual encoder models. Out of the four strategies, three are based on retrieval and one on heuristics. Our retrieval-based strategies are based on the semantic similarity and the lexical overlap between questions and passages. We train the dual encoder models in two stages: pre-training with synthetic data and fine tuning with domain-specific data. We apply negative sampling to both stages. The approach is evaluated in two passage retrieval tasks. Even though it is not evident that there is one single sampling strategy that works best in all the tasks, it is clear that our strategies contribute to improving the contrast between the response and all the other passages. Furthermore, mixing the negatives from different strategies achieve performance on par with the best performing strategy in all tasks. Our results establish a new state-of-the-art level of performance on two of the open-domain question answering datasets that we evaluated.



rate research

Read More

Dense retrieval methods have shown great promise over sparse retrieval methods in a range of NLP problems. Among them, dense phrase retrieval-the most fine-grained retrieval unit-is appealing because phrases can be directly used as the output for question answering and slot filling tasks. In this work, we follow the intuition that retrieving phrases naturally entails retrieving larger text blocks and study whether phrase retrieval can serve as the basis for coarse-level retrieval including passages and documents. We first observe that a dense phrase-retrieval system, without any retraining, already achieves better passage retrieval accuracy (+3-5% in top-5 accuracy) compared to passage retrievers, which also helps achieve superior end-to-end QA performance with fewer passages. Then, we provide an interpretation for why phrase-level supervision helps learn better fine-grained entailment compared to passage-level supervision, and also show that phrase retrieval can be improved to achieve competitive performance in document-retrieval tasks such as entity linking and knowledge-grounded dialogue. Finally, we demonstrate how phrase filtering and vector quantization can reduce the size of our index by 4-10x, making dense phrase retrieval a practical and versatile solution in multi-granularity retrieval.
Most state-of-the-art open-domain question answering systems use a neural retrieval model to encode passages into continuous vectors and extract them from a knowledge source. However, such retrieval models often require large memory to run because of the massive size of their passage index. In this paper, we introduce Binary Passage Retriever (BPR), a memory-efficient neural retrieval model that integrates a learning-to-hash technique into the state-of-the-art Dense Passage Retriever (DPR) to represent the passage index using compact binary codes rather than continuous vectors. BPR is trained with a multi-task objective over two tasks: efficient candidate generation based on binary codes and accurate reranking based on continuous vectors. Compared with DPR, BPR substantially reduces the memory cost from 65GB to 2GB without a loss of accuracy on two standard open-domain question answering benchmarks: Natural Questions and TriviaQA. Our code and trained models are available at https://github.com/studio-ousia/bpr.
Open-domain question answering relies on efficient passage retrieval to select candidate contexts, where traditional sparse vector space models, such as TF-IDF or BM25, are the de facto method. In this work, we show that retrieval can be practically implemented using dense representations alone, where embeddings are learned from a small number of questions and passages by a simple dual-encoder framework. When evaluated on a wide range of open-domain QA datasets, our dense retriever outperforms a strong Lucene-BM25 system largely by 9%-19% absolute in terms of top-20 passage retrieval accuracy, and helps our end-to-end QA system establish new state-of-the-art on multiple open-domain QA benchmarks.
We study multi-answer retrieval, an under-explored problem that requires retrieving passages to cover multiple distinct answers for a given question. This task requires joint modeling of retrieved passages, as models should not repeatedly retrieve passages containing the same answer at the cost of missing a different valid answer. Prior work focusing on single-answer retrieval is limited as it cannot reason about the set of passages jointly. In this paper, we introduce JPR, a joint passage retrieval model focusing on reranking. To model the joint probability of the retrieved passages, JPR makes use of an autoregressive reranker that selects a sequence of passages, equipped with novel training and decoding algorithms. Compared to prior approaches, JPR achieves significantly better answer coverage on three multi-answer datasets. When combined with downstream question answering, the improved retrieval enables larger answer generation models since they need to consider fewer passages, establishing a new state-of-the-art.
Conversational search plays a vital role in conversational information seeking. As queries in information seeking dialogues are ambiguous for traditional ad-hoc information retrieval (IR) systems due to the coreference and omission resolution problems inherent in natural language dialogue, resolving these ambiguities is crucial. In this paper, we tackle conversational passage retrieval (ConvPR), an important component of conversational search, by addressing query ambiguities with query reformulation integrated into a multi-stage ad-hoc IR system. Specifically, we propose two conversational query reformulation (CQR) methods: (1) term importance estimation and (2) neural query rewriting. For the former, we expand conversational queries using important terms extracted from the conversational context with frequency-based signals. For the latter, we reformulate conversational queries into natural, standalone, human-understandable queries with a pretrained sequence-tosequence model. Detailed analyses of the two CQR methods are provided quantitatively and qualitatively, explaining their advantages, disadvantages, and distinct behaviors. Moreover, to leverage the strengths of both CQR methods, we propose combining their output with reciprocal rank fusion, yielding state-of-the-art retrieval effectiveness, 30% improvement in terms of NDCG@3 compared to the best submission of TREC CAsT 2019.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا