Do you want to publish a course? Click here

The role of counterions in ionic liquid crystals

119   0   0.0 ( 0 )
 Added by Markus Bier
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Previous theoretical studies of calamitic (i.e., rod-like) ionic liquid crystals (ILCs) based on an effective one-species model led to indications of a novel smectic-A phase with a layer spacing being much larger than the length of the mesogenic (i.e., liquid-crystal forming) ions. In order to rule out the possibility that this wide smectic-A phase is merely an artifact caused by the one-species approximation, we investigate an extension which accounts explicitly for cations and anions in ILCs. Our present findings, obtained by grand canonical Monte Carlo simulations, show that the phase transitions between the isotropic and the smectic-A phases of the cation-anion system are in qualitative agreement with the effective one-species model used in the preceding studies. In particular, for ILCs with mesogenes (i.e., liquid-crystal forming species) carrying charged sites at their tips, the wide smectic-A phase forms, at low temperatures and within an intermediate density range, in between the isotropic and a hexagonal crystal phase. We find that in the ordinary smectic-A phase the spatial distribution of the counterions of the mesogens is approximately uniform, whereas in the wide smectic-A phase the small counterions accumulate in between the smectic layers. Due to this phenomenology the wide smectic-A phase could be interesting for applications which hinge on the presence of conductivity channels for mobile ions.



rate research

Read More

133 - S. Kondrat , M. Bier , L. Harnau 2010
Bulk properties of ionic liquid crystals are investigated using density functional theory. The liquid crystal molecules are represented by ellipsoidal particles with charges located in their center or at their tails. Attractive interactions are taken into account in terms of the Gay-Berne pair potential. Rich phase diagrams involving vapor, isotropic and nematic liquid, as well as smectic phases are found. The dependence of the phase behavior on various parameters such as the length of the particles and the location of charges on the particles is studied.
We study the thermodynamics of binary mixtures wherein the volume fraction of the minority component is less than the amount required to form a flat interface. Based on an explicit microscopic mean field theory, we show that the surface tension dominated equilibrium phase of a polymer mixture forms a single macroscopic droplet. A combination of elastic interactions that renormalize the surface tension, and arrests phase separation for a gel-polymer mixture, stabilize a micro-droplet phase. We compute the droplet size as a function of the interfacial tension, Flory parameter, and elastic moduli of the gel. Our results illustrate the importance of the rheological properties of the solvent in dictating the thermodynamic phase behavior of biopolymers undergoing liquid-liquid phase separation.
We review and compare recent work on the properties of fluctuating interfaces between nematic and isotropic liquid-crystalline phases. Molecular dynamics and Monte Carlo simulations have been carried out for systems of ellipsoids and hard rods with aspect ratio 15:1, and the fluctuation spectrum of interface positions (the capillary wave spectrum) has been analyzed. In addition, the capillary wave spectrum has been calculated analytically within the Landau-de Gennes theory. The theory predicts that the interfacial fluctuations can be described in terms of a wave vector dependent interfacial tension, which is anisotropic at small wavelengths (stiff director regime) and becomes isotropic at large wavelengths (flexible director regime). After determining the elastic constants in the nematic phase, theory and simulation can be compared quantitatively. We obtain good agreement for the stiff director regime. The crossover to the flexible director regime is expected at wavelengths of the order of several thousand particle diameters, which was not accessible to our simulations.
Polyvalent metal melts (gallium, tin, bismuth, etc.) have microscopic structural features, which are detected by neutron and X-ray diffraction and which are absent in simple liquids. Based on neutron and X-ray diffraction data and results of textit{ab initio} molecular dynamics simulations for liquid gallium, we examine the structure of this liquid metal at atomistic level. Time-resolved cluster analysis allows one to reveal that the short-range structural order in liquid gallium is determined by a range of the correlation lengths. This analysis performed over set of independent samples corresponding to equilibrium liquid phase discloses that there are no stable crystalline domains as well as molecule-like Ga$_2$ dimers typical for crystal phases of gallium. Structure of liquid gallium can be reproduced by the simplified model of the close-packed system of soft quasi-spheres. The results can be applied to analyze the fine structure of other polyvalent liquid metals.
The discrepancy in nucleation rate densities between simulated and experimental hard spheres remains staggering and unexplained. Suggestively, more strongly sedimenting colloidal suspensions of hard spheres nucleate much faster than weakly sedimenting systems. In this work we consider firstly the effect of sedimentation on the structure of colloidal hard spheres, by tuning the density mismatch between solvent and colloidal particles. In particular we investigate the effect on the degree of five fold symmetry present. Secondly we study the size of density fluctuations in these experimental systems in comparison to simulations. The density fluctuations are measured by assigning each particle a local density, which is related to the number of particles within a distance of 3.25 particle diameters. The standard deviation of these local densities gives an indication of the fluctuations present in the system. Five fold symmetry is suppressed by a factor of two when sedimentation is induced in our system. Density fluctuations are also increased by a factor of two in experiments compared to simulations. The change in five fold symmetry makes a difference to the expected nucleation rates, but we demonstrate that it is ultimately too small to resolve the discrepancy between experiment and simulation, while the fluctuations are shown to be an artefact of 3d particle tracking.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا