No Arabic abstract
Decentralized algorithms for stochastic optimization and learning rely on the diffusion of information as a result of repeated local exchanges of intermediate estimates. Such structures are particularly appealing in situations where agents may be hesitant to share raw data due to privacy concerns. Nevertheless, in the absence of additional privacy-preserving mechanisms, the exchange of local estimates, which are generated based on private data can allow for the inference of the data itself. The most common mechanism for guaranteeing privacy is the addition of perturbations to local estimates before broadcasting. These perturbations are generally chosen independently at every agent, resulting in a significant performance loss. We propose an alternative scheme, which constructs perturbations according to a particular nullspace condition, allowing them to be invisible (to first order in the step-size) to the network centroid, while preserving privacy guarantees. The analysis allows for general nonconvex loss functions, and is hence applicable to a large number of machine learning and signal processing problems, including deep learning.
Knowledge graph (KG) representation learning methods have achieved competitive performance in many KG-oriented tasks, among which the best ones are usually based on graph neural networks (GNNs), a powerful family of networks that learns the representation of an entity by aggregating the features of its neighbors and itself. However, many KG representation learning scenarios only provide the structure information that describes the relationships among entities, causing that entities have no input features. In this case, existing aggregation mechanisms are incapable of inducing embeddings of unseen entities as these entities have no pre-defined features for aggregation. In this paper, we present a decentralized KG representation learning approach, decentRL, which encodes each entity from and only from the embeddings of its neighbors. For optimization, we design an algorithm to distill knowledge from the model itself such that the output embeddings can continuously gain knowledge from the corresponding original embeddings. Extensive experiments show that the proposed approach performed better than many cutting-edge models on the entity alignment task, and achieved competitive performance on the entity prediction task. Furthermore, under the inductive setting, it significantly outperformed all baselines on both tasks.
In this paper, we propose Push-SAGA, a decentralized stochastic first-order method for finite-sum minimization over a directed network of nodes. Push-SAGA combines node-level variance reduction to remove the uncertainty caused by stochastic gradients, network-level gradient tracking to address the distributed nature of the data, and push-sum consensus to tackle the challenge of directed communication links. We show that Push-SAGA achieves linear convergence to the exact solution for smooth and strongly convex problems and is thus the first linearly-convergent stochastic algorithm over arbitrary strongly connected directed graphs. We also characterize the regimes in which Push-SAGA achieves a linear speed-up compared to its centralized counterpart and achieves a network-independent convergence rate. We illustrate the behavior and convergence properties of Push-SAGA with the help of numerical experiments on strongly convex and non-convex problems.
Decentralized learning enables a group of collaborative agents to learn models using a distributed dataset without the need for a central parameter server. Recently, decentralized learning algorithms have demonstrated state-of-the-art results on benchmark data sets, comparable with centralized algorithms. However, the key assumption to achieve competitive performance is that the data is independently and identically distributed (IID) among the agents which, in real-life applications, is often not applicable. Inspired by ideas from continual learning, we propose Cross-Gradient Aggregation (CGA), a novel decentralized learning algorithm where (i) each agent aggregates cross-gradient information, i.e., derivatives of its model with respect to its neighbors datasets, and (ii) updates its model using a projected gradient based on quadratic programming (QP). We theoretically analyze the convergence characteristics of CGA and demonstrate its efficiency on non-IID data distributions sampled from the MNIST and CIFAR-10 datasets. Our empirical comparisons show superior learning performance of CGA over existing state-of-the-art decentralized learning algorithms, as well as maintaining the improved performance under information compression to reduce peer-to-peer communication overhead. The code is available here on GitHub.
We consider the problem of decentralized deep learning where multiple agents collaborate to learn from a distributed dataset. While there exist several decentralized deep learning approaches, the majority consider a central parameter-server topology for aggregating the model parameters from the agents. However, such a topology may be inapplicable in networked systems such as ad-hoc mobile networks, field robotics, and power network systems where direct communication with the central parameter server may be inefficient. In this context, we propose and analyze a novel decentralized deep learning algorithm where the agents interact over a fixed communication topology (without a central server). Our algorithm is based on the heavy-ball acceleration method used in gradient-based optimization. We propose a novel consensus protocol where each agent shares with its neighbors its model parameters as well as gradient-momentum values during the optimization process. We consider both strongly convex and non-convex objective functions and theoretically analyze our algorithms performance. We present several empirical comparisons with competing decentralized learning methods to demonstrate the efficacy of our approach under different communication topologies.
In this paper, we investigate the problem of decentralized federated learning (DFL) in Internet of things (IoT) systems, where a number of IoT clients train models collectively for a common task without sharing their private training data in the absence of a central server. Most of the existing DFL schemes are composed of two alternating steps, i.e., model updating and model averaging. However, averaging model parameters directly to fuse different models at the local clients suffers from client-drift especially when the training data are heterogeneous across different clients. This leads to slow convergence and degraded learning performance. As a possible solution, we propose the decentralized federated earning via mutual knowledge transfer (Def-KT) algorithm where local clients fuse models by transferring their learnt knowledge to each other. Our experiments on the MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets reveal that the proposed Def-KT algorithm significantly outperforms the baseline DFL methods with model averaging, i.e., Combo and FullAvg, especially when the training data are not independent and identically distributed (non-IID) across different clients.