No Arabic abstract
In this paper, we address several inadequacies of current video object segmentation pipelines. Firstly, a cyclic mechanism is incorporated to the standard semi-supervised process to produce more robust representations. By relying on the accurate reference mask in the starting frame, we show that the error propagation problem can be mitigated. Next, we introduce a simple gradient correction module, which extends the offline pipeline to an online method while maintaining the efficiency of the former. Finally we develop cycle effective receptive field (cycle-ERF) based on gradient correction to provide a new perspective into analyzing object-specific regions of interests. We conduct comprehensive experiments on challenging benchmarks of DAVIS17 and Youtube-VOS, demonstrating that the cyclic mechanism is beneficial to segmentation quality.
Current state-of-the-art approaches for Semi-supervised Video Object Segmentation (Semi-VOS) propagates information from previous frames to generate segmentation mask for the current frame. This results in high-quality segmentation across challenging scenarios such as changes in appearance and occlusion. But it also leads to unnecessary computations for stationary or slow-moving objects where the change across frames is minimal. In this work, we exploit this observation by using temporal information to quickly identify frames with minimal change and skip the heavyweight mask generation step. To realize this efficiency, we propose a novel dynamic network that estimates change across frames and decides which path -- computing a full network or reusing previous frames feature -- to choose depending on the expected similarity. Experimental results show that our approach significantly improves inference speed without much accuracy degradation on challenging Semi-VOS datasets -- DAVIS 16, DAVIS 17, and YouTube-VOS. Furthermore, our approach can be applied to multiple Semi-VOS methods demonstrating its generality. The code is available in https://github.com/HYOJINPARK/Reuse_VOS.
We propose a self-supervised spatio-temporal matching method coined Motion-Aware Mask Propagation (MAMP) for semi-supervised video object segmentation. During training, MAMP leverages the frame reconstruction task to train the model without the need for annotations. During inference, MAMP extracts high-resolution features from each frame to build a memory bank from the features as well as the predicted masks of selected past frames. MAMP then propagates the masks from the memory bank to subsequent frames according to our motion-aware spatio-temporal matching module, also proposed in this paper. Evaluation on DAVIS-2017 and YouTube-VOS datasets show that MAMP achieves state-of-the-art performance with stronger generalization ability compared to existing self-supervised methods, i.e. 4.9% higher mean $mathcal{J}&mathcal{F}$ on DAVIS-2017 and 4.85% higher mean $mathcal{J}&mathcal{F}$ on the unseen categories of YouTube-VOS than the nearest competitor. Moreover, MAMP performs on par with many supervised video object segmentation methods. Our code is available at: url{https://github.com/bo-miao/MAMP}.
Estimating 3D bounding boxes from monocular images is an essential component in autonomous driving, while accurate 3D object detection from this kind of data is very challenging. In this work, by intensive diagnosis experiments, we quantify the impact introduced by each sub-task and found the `localization error is the vital factor in restricting monocular 3D detection. Besides, we also investigate the underlying reasons behind localization errors, analyze the issues they might bring, and propose three strategies. First, we revisit the misalignment between the center of the 2D bounding box and the projected center of the 3D object, which is a vital factor leading to low localization accuracy. Second, we observe that accurately localizing distant objects with existing technologies is almost impossible, while those samples will mislead the learned network. To this end, we propose to remove such samples from the training set for improving the overall performance of the detector. Lastly, we also propose a novel 3D IoU oriented loss for the size estimation of the object, which is not affected by `localization error. We conduct extensive experiments on the KITTI dataset, where the proposed method achieves real-time detection and outperforms previous methods by a large margin. The code will be made available at: https://github.com/xinzhuma/monodle.
Imbalance issue is a major yet unsolved bottleneck for the current object detection models. In this work, we observe two crucial yet never discussed imbalance issues. The first imbalance lies in the large number of low-quality RPN proposals, which makes the R-CNN module (i.e., post-classification layers) become highly biased towards the negative proposals in the early training stage. The second imbalance stems from the unbalanced ground-truth numbers across different testing images, resulting in the imbalance of the number of potentially existing positive proposals in testing phase. To tackle these two imbalance issues, we incorporates two innovations into Faster R-CNN: 1) an R-CNN Gradient Annealing (RGA) strategy to enhance the impact of positive proposals in the early training stage. 2) a set of Parallel R-CNN Modules (PRM) with different positive/negative sampling ratios during training on one same backbone. Our RGA and PRM can totally bring 2.0% improvements on AP on COCO minival. Experiments on CrowdHuman further validates the effectiveness of our innovations across various kinds of object detection tasks.
Supervised learning in large discriminative models is a mainstay for modern computer vision. Such an approach necessitates investing in large-scale human-annotated datasets for achieving state-of-the-art results. In turn, the efficacy of supervised learning may be limited by the size of the human annotated dataset. This limitation is particularly notable for image segmentation tasks, where the expense of human annotation is especially large, yet large amounts of unlabeled data may exist. In this work, we ask if we may leverage semi-supervised learning in unlabeled video sequences and extra images to improve the performance on urban scene segmentation, simultaneously tackling semantic, instance, and panoptic segmentation. The goal of this work is to avoid the construction of sophisticated, learned architectures specific to label propagation (e.g., patch matching and optical flow). Instead, we simply predict pseudo-labels for the unlabeled data and train subsequent models with both human-annotated and pseudo-labeled data. The procedure is iterated for several times. As a result, our Naive-Student model, trained with such simple yet effective iterative semi-supervised learning, attains state-of-the-art results at all three Cityscapes benchmarks, reaching the performance of 67.8% PQ, 42.6% AP, and 85.2% mIOU on the test set. We view this work as a notable step towards building a simple procedure to harness unlabeled video sequences and extra images to surpass state-of-the-art performance on core computer vision tasks.