Do you want to publish a course? Click here

Adversarial Robustness of Supervised Sparse Coding

105   0   0.0 ( 0 )
 Added by Jeremias Sulam
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Several recent results provide theoretical insights into the phenomena of adversarial examples. Existing results, however, are often limited due to a gap between the simplicity of the models studied and the complexity of those deployed in practice. In this work, we strike a better balance by considering a model that involves learning a representation while at the same time giving a precise generalization bound and a robustness certificate. We focus on the hypothesis class obtained by combining a sparsity-promoting encoder coupled with a linear classifier, and show an interesting interplay between the expressivity and stability of the (supervised) representation map and a notion of margin in the feature space. We bound the robust risk (to $ell_2$-bounded perturbations) of hypotheses parameterized by dictionaries that achieve a mild encoder gap on training data. Furthermore, we provide a robustness certificate for end-to-end classification. We demonstrate the applicability of our analysis by computing certified accuracy on real data, and compare with other alternatives for certified robustness.

rate research

Read More

The goal of predictive sparse coding is to learn a representation of examples as sparse linear combinations of elements from a dictionary, such that a learned hypothesis linear in the new representation performs well on a predictive task. Predictive sparse coding algorithms recently have demonstrated impressive performance on a variety of supervised tasks, but their generalization properties have not been studied. We establish the first generalization error bounds for predictive sparse coding, covering two settings: 1) the overcomplete setting, where the number of features k exceeds the original dimensionality d; and 2) the high or infinite-dimensional setting, where only dimension-free bounds are useful. Both learning bounds intimately depend on stability properties of the learned sparse encoder, as measured on the training sample. Consequently, we first present a fundamental stability result for the LASSO, a result characterizing the stability of the sparse codes with respect to perturbations to the dictionary. In the overcomplete setting, we present an estimation error bound that decays as tilde{O}(sqrt(d k/m)) with respect to d and k. In the high or infinite-dimensional setting, we show a dimension-free bound that is tilde{O}(sqrt(k^2 s / m)) with respect to k and s, where s is an upper bound on the number of non-zeros in the sparse code for any training data point.
131 - Yaqing Wang , James T. Kwok , 2019
Convolutional sparse coding (CSC) can learn representative shift-invariant patterns from multiple kinds of data. However, existing CSC methods can only model noises from Gaussian distribution, which is restrictive and unrealistic. In this paper, we propose a general CSC model capable of dealing with complicated unknown noise. The noise is now modeled by Gaussian mixture model, which can approximate any continuous probability density function. We use the expectation-maximization algorithm to solve the problem and design an efficient method for the weighted CSC problem in maximization step. The crux is to speed up the convolution in the frequency domain while keeping the other computation involving weight matrix in the spatial domain. Besides, we simultaneously update the dictionary and codes by nonconvex accelerated proximal gradient algorithm without bringing in extra alternating loops. The resultant method obtains comparable time and space complexity compared with existing CSC methods. Extensive experiments on synthetic and real noisy biomedical data sets validate that our method can model noise effectively and obtain high-quality filters and representation.
Gaussian processes (GPs) enable principled computation of model uncertainty, making them attractive for safety-critical applications. Such scenarios demand that GP decisions are not only accurate, but also robust to perturbations. In this paper we present a framework to analyse adversarial robustness of GPs, defined as invariance of the models decision to bounded perturbations. Given a compact subset of the input space $Tsubseteq mathbb{R}^d$, a point $x^*$ and a GP, we provide provable guarantees of adversarial robustness of the GP by computing lower and upper bounds on its prediction range in $T$. We develop a branch-and-bound scheme to refine the bounds and show, for any $epsilon > 0$, that our algorithm is guaranteed to converge to values $epsilon$-close to the actual values in finitely many iterations. The algorithm is anytime and can handle both regression and classification tasks, with analytical formulation for most kernels used in practice. We evaluate our methods on a collection of synthetic and standard benchmark datasets, including SPAM, MNIST and FashionMNIST. We study the effect of approximate inference techniques on robustness and demonstrate how our method can be used for interpretability. Our empirical results suggest that the adversarial robustness of GPs increases with accurate posterior estimation.
314 - Tianyu Pang , Kun Xu , Chao Du 2019
Though deep neural networks have achieved significant progress on various tasks, often enhanced by model ensemble, existing high-performance models can be vulnerable to adversarial attacks. Many efforts have been devoted to enhancing the robustness of individual networks and then constructing a straightforward ensemble, e.g., by directly averaging the outputs, which ignores the interaction among networks. This paper presents a new method that explores the interaction among individual networks to improve robustness for ensemble models. Technically, we define a new notion of ensemble diversity in the adversarial setting as the diversity among non-maximal predictions of individual members, and present an adaptive diversity promoting (ADP) regularizer to encourage the diversity, which leads to globally better robustness for the ensemble by making adversarial examples difficult to transfer among individual members. Our method is computationally efficient and compatible with the defense methods acting on individual networks. Empirical results on various datasets verify that our method can improve adversarial robustness while maintaining state-of-the-art accuracy on normal examples.
We present a more general analysis of $H$-calibration for adversarially robust classification. By adopting a finer definition of calibration, we can cover settings beyond the restricted hypothesis sets studied in previous work. In particular, our results hold for most common hypothesis sets used in machine learning. We both fix some previous calibration results (Bao et al., 2020) and generalize others (Awasthi et al., 2021). Moreover, our calibration results, combined with the previous study of consistency by Awasthi et al. (2021), also lead to more general $H$-consistency results covering common hypothesis sets.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا