No Arabic abstract
In barter exchanges, participants swap goods with one another without exchanging money; exchanges are often facilitated by a central clearinghouse, with the goal of maximizing the aggregate quality (or number) of swaps. Barter exchanges are subject to many forms of uncertainty--in participant preferences, the feasibility and quality of various swaps, and so on. Our work is motivated by kidney exchange, a real-world barter market in which patients in need of a kidney transplant swap their willing living donors, in order to find a better match. Modern exchanges include 2- and 3-way swaps, making the kidney exchange clearing problem NP-hard. Planned transplants often fail for a variety of reasons--if the donor organ is refused by the recipients medical team, or if the donor and recipient are found to be medically incompatible. Due to 2- and 3-way swaps, failed transplants can cascade through an exchange; one US-based exchange estimated that about 85% of planned transplants failed in 2019. Many optimization-based approaches have been designed to avoid these failures; however most exchanges cannot implement these methods due to legal and policy constraints. Instead we consider a setting where exchanges can query the preferences of certain donors and recipients--asking whether they would accept a particular transplant. We characterize this as a two-stage decision problem, in which the exchange program (a) queries a small number of transplants before committing to a matching, and (b) constructs a matching according to fixed policy. We show that selecting these edges is a challenging combinatorial problem, which is non-monotonic and non-submodular, in addition to being NP-hard. We propose both a greedy heuristic and a Monte Carlo tree search, which outperforms previous approaches, using experiments on both synthetic data and real kidney exchange data from the United Network for Organ Sharing.
In barter exchanges, participants directly trade their endowed goods in a constrained economic setting without money. Transactions in barter exchanges are often facilitated via a central clearinghouse that must match participants even in the face of uncertainty---over participants, existence and quality of potential trades, and so on. Leveraging robust combinatorial optimization techniques, we address uncertainty in kidney exchange, a real-world barter market where patients swap (in)compatible paired donors. We provide two scalable robust methods to handle two distinct types of uncertainty in kidney exchange---over the quality and the existence of a potential match. The latter case directly addresses a weakness in all stochastic-optimization-based methods to the kidney exchange clearing problem, which all necessarily require explicit estimates of the probability of a transaction existing---a still-unsolved problem in this nascent market. We also propose a novel, scalable kidney exchange formulation that eliminates the need for an exponential-time constraint generation process in competing formulations, maintains provable optimality, and serves as a subsolver for our robust approach. For each type of uncertainty we demonstrate the benefits of robustness on real data from a large, fielded kidney exchange in the United States. We conclude by drawing parallels between robustness and notions of fairness in the kidney exchange setting.
Motivated by kidney exchange, we study a stochastic cycle and chain packing problem, where we aim to identify structures in a directed graph to maximize the expectation of matched edge weights. All edges are subject to failure, and the failures can have nonidentical probabilities. To the best of our knowledge, the state-of-the-art approaches are only tractable when failure probabilities are identical. We formulate a relevant non-convex optimization problem and propose a tractable mixed-integer linear programming reformulation to solve it. In addition, we propose a model that integrates both risks and the expected utilities of the matching by incorporating conditional value at risk (CVaR) into the objective function, providing a robust formulation for this problem. Subsequently, we propose a sample-average-approximation (SAA) based approach to solve this problem. We test our approaches on data from the United Network for Organ Sharing (UNOS) and compare against state-of-the-art approaches. Our model provides better performance with the same running time as a leading deterministic approach (PICEF). Our CVaR extensions with an SAA-based method improves the $alpha times 100%$ ($0<alphaleqslant 1$) worst-case performance substantially compared to existing models.
Algorithms for exchange of kidneys is one of the key successful applications in market design, artificial intelligence, and operations research. Potent immunosuppressant drugs suppress the bodys ability to reject a transplanted organ up to the point that a transplant across blood- or tissue-type incompatibility becomes possible. In contrast to the standard kidney exchange problem, we consider a setting that also involves the decision about which recipients receive from the limited supply of immunosuppressants that make them compatible with originally incompatible kidneys. We firstly present a general computational framework to model this problem. Our main contribution is a range of efficient algorithms that provide flexibility in terms of meeting meaningful objectives. Motivated by the current reality of kidney exchanges using sophisticated mathematical-programming-based clearing algorithms, we then present a general but scalable approach to optimal clearing with immunosuppression; we validate our approach on realistic data from a large fielded exchange.
As reinforcement learning techniques are increasingly applied to real-world decision problems, attention has turned to how these algorithms use potentially sensitive information. We consider the task of training a policy that maximizes reward while minimizing disclosure of certain sensitive state variables through the actions. We give examples of how this setting covers real-world problems in privacy for sequential decision-making. We solve this problem in the policy gradients framework by introducing a regularizer based on the mutual information (MI) between the sensitive state and the actions at a given timestep. We develop a model-based stochastic gradient estimator for optimization of privacy-constrained policies. We also discuss an alternative MI regularizer that serves as an upper bound to our main MI regularizer and can be optimized in a model-free setting. We contrast previous work in differentially-private RL to our mutual-information formulation of information disclosure. Experimental results show that our training method results in policies which hide the sensitive state.
Knowledge tracing (KT) defines the task of predicting whether students can correctly answer questions based on their historical response. Although much research has been devoted to exploiting the question information, plentiful advanced information among questions and skills hasnt been well extracted, making it challenging for previous work to perform adequately. In this paper, we demonstrate that large gains on KT can be realized by pre-training embeddings for each question on abundant side information, followed by training deep KT models on the obtained embeddings. To be specific, the side information includes question difficulty and three kinds of relations contained in a bipartite graph between questions and skills. To pre-train the question embeddings, we propose to use product-based neural networks to recover the side information. As a result, adopting the pre-trained embeddings in existing deep KT models significantly outperforms state-of-the-art baselines on three common KT datasets.