No Arabic abstract
CP tensor decomposition with alternating least squares (ALS) is dominated in cost by the matricized-tensor times Khatri-Rao product (MTTKRP) kernel that is necessary to set up the quadratic optimization subproblems. State-of-art parallel ALS implementations use dimension trees to avoid redundant computations across MTTKRPs within each ALS sweep. In this paper, we propose two new parallel algorithms to accelerate CP-ALS. We introduce the multi-sweep dimension tree (MSDT) algorithm, which requires the contraction between an order N input tensor and the first-contracted input matrix once every (N-1)/N sweeps. This algorithm reduces the leading order computational cost by a factor of 2(N-1)/N relative to the best previously known approach. In addition, we introduce a more communication-efficient approach to parallelizing an approximate CP-ALS algorithm, pairwise perturbation. This technique uses perturbative corrections to the subproblems rather than recomputing the contractions, and asymptotically accelerates ALS. Our benchmark results show that the per-sweep time achieves 1.25X speed-up for MSDT and 1.94X speed-up for pairwise perturbation compared to the state-of-art dimension trees running on 1024 processors on the Stampede2 supercomputer.
The alternating least squares algorithm for CP and Tucker decomposition is dominated in cost by the tensor contractions necessary to set up the quadratic optimization subproblems. We introduce a novel family of algorithms that uses perturbative corrections to the subproblems rather than recomputing the tensor contractions. This approximation is accurate when the factor matrices are changing little across iterations, which occurs when alternating least squares approaches convergence. We provide a theoretical analysis to bound the approximation error. Our numerical experiments demonstrate that the proposed pairwise perturbation algorithms are easy to control and converge to minima that are as good as alternating least squares. The experimental results show improvements of up to 3.1X with respect to state-of-the-art alternating least squares approaches for various model tensor problems and real datasets.
Randomized algorithms provide solutions to two ubiquitous problems: (1) the distributed calculation of a principal component analysis or singular value decomposition of a highly rectangular matrix, and (2) the distributed calculation of a low-rank approximation (in the form of a singular value decomposition) to an arbitrary matrix. Carefully honed algorithms yield results that are uniformly superior to those of the stock, deterministic implementations in Spark (the popular platform for distributed computation); in particular, whereas the stock software will without warning return left singular vectors that are far from numerically orthonormal, a significantly burnished randomized implementation generates left singular vectors that are numerically orthonormal to nearly the machine precision.
We introduce an adaptive element-based domain decomposition (DD) method for solving saddle point problems defined as a block two by two matrix. The algorithm does not require any knowledge of the constrained space. We assume that all sub matrices are sparse and that the diagonal blocks are spectrally equivalent to a sum of positive semi definite matrices. The latter assumption enables the design of adaptive coarse space for DD methods that extends the GenEO theory to saddle point problems. Numerical results on three dimensional elasticity problems for steel-rubber structures discretized by a finite element with continuous pressure are shown for up to one billion degrees of freedom.
In this work we formally derive and prove the correctness of the algorithms and data structures in a parallel, distributed-memory, generic finite element framework that supports h-adaptivity on computational domains represented as forest-of-trees. The framework is grounded on a rich representation of the adaptive mesh suitable for generic finite elements that is built on top of a low-level, light-weight forest-of-trees data structure handled by a specialized, highly parallel adaptive meshing engine, for which we have identified the requirements it must fulfill to be coupled into our framework. Atop this two-layered mesh representation, we build the rest of data structures required for the numerical integration and assembly of the discrete system of linear equations. We consider algorithms that are suitable for both subassembled and fully-assembled distributed data layouts of linear system matrices. The proposed framework has been implemented within the FEMPAR scientific software library, using p4est as a practical forest-of-octrees demonstrator. A strong scaling study of this implementation when applied to Poisson and Maxwell problems reveals remarkable scalability up to 32.2K CPU cores and 482.2M degrees of freedom. Besides, a comparative performance study of FEMPAR and the state-of-the-art deal.ii finite element software shows at least comparative performance, and at most factor 2-3 improvements in the h-adaptive approximation of a Poisson problem with first- and second-order Lagrangian finite elements, respectively.
Quaternion singular value decomposition (QSVD) is a robust technique of digital watermarking which can extract high quality watermarks from watermarked images with low distortion. In this paper, QSVD technique is further investigated and an efficient robust watermarking scheme is proposed. The improved algebraic structure-preserving method is proposed to handle the problem of explosion of complexity occurred in the conventional QSVD design. Secret information is transmitted blindly by incorporating in QSVD two new strategies, namely, coefficient pair selection and adaptive embedding. Unlike conventional QSVD which embeds watermarks in a single imaginary unit, we propose to adaptively embed the watermark into the optimal hiding position using the Normalized Cross-Correlation (NC) method. This avoids the selection of coefficient pair with less correlation, and thus, it reduces embedding impact by decreasing the maximum modification of coefficient values. In this way, compared with conventional QSVD, the proposed watermarking strategy avoids more modifications to a single color image layer and a better visual quality of the watermarked image is observed. Meanwhile, adaptive QSVD resists some common geometric attacks, and it improves the robustness of conventional QSVD. With these improvements, our method outperforms conventional QSVD. Its superiority over other state-of-the-art methods is also demonstrated experimentally.