Do you want to publish a course? Click here

Detecting and Exorcising Statistical Demons from Language Models with Anti-Models of Negative Data

59   0   0.0 ( 0 )
 Added by Michael Wick
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Its been said that Language Models are Unsupervised Multitask Learners. Indeed, self-supervised language models trained on positive examples of English text generalize in desirable ways to many natural language tasks. But if such models can stray so far from an initial self-supervision objective, a wayward model might generalize in undesirable ways too, say to nonsensical negative examples of unnatural language. A key question in this work is: do language models trained on (positive) training data also generalize to (negative) test data? We use this question as a contrivance to assess the extent to which language models learn undesirable properties of text, such as n-grams, that might interfere with the learning of more desirable properties of text, such as syntax. We find that within a model family, as the number of parameters, training epochs, and data set size increase, so does a models ability to generalize to negative n-gram data, indicating standard self-supervision generalizes too far. We propose a form of inductive bias that attenuates such undesirable signals with negative data distributions automatically learned from positive data. We apply the method to remove n-gram signals from LSTMs and find that doing so causes them to favor syntactic signals, as demonstrated by large error reductions (up to 46% on the hardest cases) on a syntactic subject-verb agreement task.

rate research

Read More

Large-scale language models such as BERT have achieved state-of-the-art performance across a wide range of NLP tasks. Recent studies, however, show that such BERT-based models are vulnerable facing the threats of textual adversarial attacks. We aim to address this problem from an information-theoretic perspective, and propose InfoBERT, a novel learning framework for robust fine-tuning of pre-trained language models. InfoBERT contains two mutual-information-based regularizers for model training: (i) an Information Bottleneck regularizer, which suppresses noisy mutual information between the input and the feature representation; and (ii) a Robust Feature regularizer, which increases the mutual information between local robust features and global features. We provide a principled way to theoretically analyze and improve the robustness of representation learning for language models in both standard and adversarial training. Extensive experiments demonstrate that InfoBERT achieves state-of-the-art robust accuracy over several adversarial datasets on Natural Language Inference (NLI) and Question Answering (QA) tasks. Our code is available at https://github.com/AI-secure/InfoBERT.
101 - Xu Zou , Da Yin , Qingyang Zhong 2021
Large-scale pre-trained language models have demonstrated strong capabilities of generating realistic text. However, it remains challenging to control the generation results. Previous approaches such as prompting are far from sufficient, which limits the usage of language models. To tackle this challenge, we propose an innovative method, inverse prompting, to better control text generation. The core idea of inverse prompting is to use generated text to inversely predict the prompt during beam search, which enhances the relevance between the prompt and the generated text and provides better controllability. Empirically, we pre-train a large-scale Chinese language model to perform a systematic study using human evaluation on the tasks of open-domain poem generation and open-domain long-form question answering. Our results show that our proposed method substantially outperforms the baselines and that our generation quality is close to human performance on some of the tasks. Narrators can try our poem generation demo at https://pretrain.aminer.cn/apps/poetry.html, while our QA demo can be found at https://pretrain.aminer.cn/app/qa. For researchers, the code is provided in https://github.com/THUDM/InversePrompting.
Is it possible to use natural language to intervene in a models behavior and alter its prediction in a desired way? We investigate the effectiveness of natural language interventions for reading-comprehension systems, studying this in the context of social stereotypes. Specifically, we propose a new language understanding task, Linguistic Ethical Interventions (LEI), where the goal is to amend a question-answering (QA) models unethical behavior by communicating context-specific principles of ethics and equity to it. To this end, we build upon recent methods for quantifying a systems social stereotypes, augmenting them with different kinds of ethical interventions and the desired model behavior under such interventions. Our zero-shot evaluation finds that even todays powerful neural language models are extremely poor ethical-advice takers, that is, they respond surprisingly little to ethical interventions even though these interventions are stated as simple sentences. Few-shot learning improves model behavior but remains far from the desired outcome, especially when evaluated for various types of generalization. Our new task thus poses a novel language understanding challenge for the community.
The dominant paradigm of natural language processing consists of large-scale pre-training on general domain data and adaptation to particular tasks or domains. As we pre-train larger models, conventional fine-tuning, which retrains all model parameters, becomes less feasible. Using GPT-3 175B as an example, deploying many independent instances of fine-tuned models, each with 175B parameters, is extremely expensive. We propose Low-Rank Adaptation, or LoRA, which freezes the pre-trained model weights and injects trainable rank decomposition matrices into each layer of the Transformer architecture, greatly reducing the number of trainable parameters for downstream tasks. For GPT-3, LoRA can reduce the number of trainable parameters by 10,000 times and the computation hardware requirement by 3 times compared to full fine-tuning. LoRA performs on-par or better than fine-tuning in model quality on both GPT-3 and GPT-2, despite having fewer trainable parameters, a higher training throughput, and no additional inference latency. We also provide an empirical investigation into rank-deficiency in language model adaptations, which sheds light on the efficacy of LoRA. We release our implementation in GPT-2 at https://github.com/microsoft/LoRA .
114 - Yujia Qin , Yankai Lin , Jing Yi 2021
Recent explorations of large-scale pre-trained language models (PLMs) such as GPT-3 have revealed the power of PLMs with huge amounts of parameters, setting off a wave of training ever-larger PLMs. However, training a large-scale PLM requires tremendous amounts of computational resources, which is time-consuming and expensive. In addition, existing large-scale PLMs are mainly trained from scratch individually, ignoring the availability of many existing well-trained PLMs. To this end, we explore the question that how can previously trained PLMs benefit training larger PLMs in future. Specifically, we introduce a novel pre-training framework named knowledge inheritance (KI), which combines both self-learning and teacher-guided learning to efficiently train larger PLMs. Sufficient experimental results demonstrate the feasibility of our KI framework. We also conduct empirical analyses to explore the effects of teacher PLMs pre-training settings, including model architecture, pre-training data, etc. Finally, we show that KI can well support lifelong learning and knowledge transfer.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا