Robust Optimization on Unrelated Parallel Machine Scheduling with Setup Times


Abstract in English

The parallel machine scheduling problem has been a popular topic for many years due to its theoretical and practical importance. This paper addresses the robust makespan optimization problem on unrelated parallel machine scheduling with sequence-dependent setup times, where the processing times are uncertain, and the only knowledge is the intervals they take values from. We propose a robust optimization model with min-max regret criterion to formulate this problem. To solve this problem, we prove that the worst-case scenario with the maximum regret for a given solution belongs to a finite set of extreme scenarios. Based on this theoretical analysis, the procedure to obtain the maximum regret is proposed and an enhanced regret evaluation method (ERE) is designed to accelerate this process. A multi-start decomposition-based heuristic algorithm (MDH) is proposed to solve this problem. High-quality initial solutions and an upper bound are examined to help better solve the problem. Computational experiments are conducted to justify the performance of these methods.

Download