Four-Dimensional Scaling of Dipole Polarizability in Quantum Systems


Abstract in English

Polarizability is a key response property of physical and chemical systems, which has an impact on intermolecular interactions, spectroscopic observables, and vacuum polarization. The calculation of polarizability for quantum systems involves an infinite sum over all excited (bound and continuum) states, concealing the physical interpretation of polarization mechanisms and complicating the derivation of efficient response models. Approximate expressions for the dipole polarizability, $alpha$, rely on different scaling laws $alpha propto$ $R^3$, $R^4$, or $R^7$, for various definitions of the system radius $R$. Here, we consider a range of atom-like quantum systems of varying spatial dimensionality and having qualitatively different spectra, demonstrating that their polarizability follows a universal four-dimensional scaling law $alpha = C (4 mu q^2/hbar^2)L^4$, where $mu$ and $q$ are the (effective) particle mass and charge, $C$ is a dimensionless ratio between effective excitation energies, and the characteristic length $L$ is defined via the $mathcal{L}^2$-norm of the position operator. The applicability of this unified formula is demonstrated by accurately predicting the dipole polarizability of 36 atoms and 1641 small organic~molecules.

Download