Do you want to publish a course? Click here

Efficient Bayesian inference of fully stochastic epidemiological models with applications to COVID-19

101   0   0.0 ( 0 )
 Added by Robert Jack
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Epidemiological forecasts are beset by uncertainties about the underlying epidemiological processes, and the surveillance process through which data are acquired. We present a Bayesian inference methodology that quantifies these uncertainties, for epidemics that are modelled by (possibly) non-stationary, continuous-time, Markov population processes. The efficiency of the method derives from a functional central limit theorem approximation of the likelihood, valid for large populations. We demonstrate the methodology by analysing the early stages of the COVID-19 pandemic in the UK, based on age-structured data for the number of deaths. This includes maximum a posteriori estimates, MCMC sampling of the posterior, computation of the model evidence, and the determination of parameter sensitivities via the Fisher information matrix. Our methodology is implemented in PyRoss, an open-source platform for analysis of epidemiological compartment models.



rate research

Read More

88 - Ben Boukai , Jiayue Wang 2020
In this short technical report we model, within the Bayesian framework, the rate of positive tests reported by the the State of Indiana, accounting also for the substantial variability (and overdispeartion) in the daily count of the tests performed. The approach we take, results with a simple procedure for prediction, a posteriori, of this rate of positivity and allows for an easy and a straightforward adaptation by any agency tracking daily results of COVID-19 tests. The numerical results provided herein were obtained via an updatable R Markdown document.
We propose a forecasting method for predicting epidemiological health series on a two-week horizon at the regional and interregional resolution. The approach is based on model order reduction of parametric compartmental models, and is designed to accommodate small amount of sanitary data. The efficiency of the method is shown in the case of the prediction of the number of infected and removed people during the two pandemic waves of COVID-19 in France, which have taken place approximately between February and November 2020. Numerical results illustrate the promising potential of the approach.
A generalisation of the Susceptible-Infectious model is made to include a time-dependent transmission rate, which leads to a close analytical expression in terms of a logistic function. The solution can be applied to any continuous function chosen to describe the evolution of the transmission rate with time. Taking inspiration from real data of the Covid-19, for the case of cumulative confirmed positives and deaths, we propose an exponentially decaying transmission rate with two free parameters, one for its initial amplitude and another one for its decaying rate. The resultant time-dependent SI model, which under extra conditions recovers the standard Gompertz functional form, is then compared with data from selected countries and its parameters fit using Bayesian inference. We make predictions about the asymptotic number of confirmed positives and deaths, and discuss the possible evolution of the disease in each country in terms of our parametrisation of the transmission rate.
Knowing COVID-19 epidemiological distributions, such as the time from patient admission to death, is directly relevant to effective primary and secondary care planning, and moreover, the mathematical modelling of the pandemic generally. We determine epidemiological distributions for patients hospitalised with COVID-19 using a large dataset ($N=21{,}000-157{,}000$) from the Brazilian Sistema de Informac{c}~ao de Vigil^ancia Epidemiologica da Gripe database. A joint Bayesian subnational model with partial pooling is used to simultaneously describe the 26 states and one federal district of Brazil, and shows significant variation in the mean of the symptom-onset-to-death time, with ranges between 11.2-17.8 days across the different states, and a mean of 15.2 days for Brazil. We find strong evidence in favour of specific probability density function choices: for example, the gamma distribution gives the best fit for onset-to-death and the generalised log-normal for onset-to-hospital-admission. Our results show that epidemiological distributions have considerable geographical variation, and provide the first estimates of these distributions in a low and middle-income setting. At the subnational level, variation in COVID-19 outcome timings are found to be correlated with poverty, deprivation and segregation levels, and weaker correlation is observed for mean age, wealth and urbanicity.
Large-scale testing is considered key to assess the state of the current COVID-19 pandemic. Yet, the link between the reported case numbers and the true state of the pandemic remains elusive. We develop mathematical models based on competing hypotheses regarding this link, thereby providing different prevalence estimates based on case numbers, and validate them by predicting SARS-CoV-2-attributed death rate trajectories. Assuming that individuals were tested based solely on a predefined risk of being infectious implies the absolute case numbers reflect the prevalence, but turned out to be a poor predictor, consistently overestimating growth rates at the beginning of two COVID-19 epidemic waves. In contrast, assuming that testing capacity is fully exploited performs better. This leads to using the percent-positive rate as a more robust indicator of epidemic dynamics, however we find it is subject to a saturation phenomenon that needs to be accounted for as the number of tests becomes larger.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا