No Arabic abstract
Style transfer has been widely explored in natural language generation with non-parallel corpus by directly or indirectly extracting a notion of style from source and target domain corpus. A common shortcoming of existing approaches is the prerequisite of joint annotations across all the stylistic dimensions under consideration. Availability of such dataset across a combination of styles limits the extension of these setups to multiple style dimensions. While cascading single-dimensional models across multiple styles is a possibility, it suffers from content loss, especially when the style dimensions are not completely independent of each other. In our work, we relax this requirement of jointly annotated data across multiple styles by using independently acquired data across different style dimensions without any additional annotations. We initialize an encoder-decoder setup with transformer-based language model pre-trained on a generic corpus and enhance its re-writing capability to multiple target style dimensions by employing multiple style-aware language models as discriminators. Through quantitative and qualitative evaluation, we show the ability of our model to control styles across multiple style dimensions while preserving content of the input text. We compare it against baselines involving cascaded state-of-the-art uni-dimensional style transfer models.
Formality style transformation is the task of modifying the formality of a given sentence without changing its content. Its challenge is the lack of large-scale sentence-aligned parallel data. In this paper, we propose an omnivorous model that takes parallel data and formality-classified data jointly to alleviate the data sparsity issue. We empirically demonstrate the effectiveness of our approach by achieving the state-of-art performance on a recently proposed benchmark dataset of formality transfer. Furthermore, our model can be readily adapted to other unsupervised text style transfer tasks like unsupervised sentiment transfer and achieve competitive results on three widely recognized benchmarks.
We introduce a new approach to tackle the problem of offensive language in online social media. Our approach uses unsupervised text style transfer to translate offensive sentences into non-offensive ones. We propose a new method for training encoder-decoders using non-parallel data that combines a collaborative classifier, attention and the cycle consistency loss. Experimental results on data from Twitter and Reddit show that our method outperforms a state-of-the-art text style transfer system in two out of three quantitative metrics and produces reliable non-offensive transferred sentences.
Students feedback is an important source of collecting students opinions to improve the quality of training activities. Implementing sentiment analysis into student feedback data, we can determine sentiments polarities which express all problems in the institution since changes necessary will be applied to improve the quality of teaching and learning. This study focused on machine learning and natural language processing techniques (NaiveBayes, Maximum Entropy, Long Short-Term Memory, Bi-Directional Long Short-Term Memory) on the VietnameseStudents Feedback Corpus collected from a university. The final results were compared and evaluated to find the most effective model based on different evaluation criteria. The experimental results show that the Bi-Directional LongShort-Term Memory algorithm outperformed than three other algorithms in terms of the F1-score measurement with 92.0% on the sentiment classification task and 89.6% on the topic classification task. In addition, we developed a sentiment analysis application analyzing student feedback. The application will help the institution to recognize students opinions about a problem and identify shortcomings that still exist. With the use of this application, the institution can propose an appropriate method to improve the quality of training activities in the future.
The dominant approach to unsupervised style transfer in text is based on the idea of learning a latent representation, which is independent of the attributes specifying its style. In this paper, we show that this condition is not necessary and is not always met in practice, even with domain adversarial training that explicitly aims at learning such disentangled representations. We thus propose a new model that controls several factors of variation in textual data where this condition on disentanglement is replaced with a simpler mechanism based on back-translation. Our method allows control over multiple attributes, like gender, sentiment, product type, etc., and a more fine-grained control on the trade-off between content preservation and change of style with a pooling operator in the latent space. Our experiments demonstrate that the fully entangled model produces better generations, even when tested on new and more challenging benchmarks comprising reviews with multiple sentences and multiple attributes.
Models pre-trained on large-scale regular text corpora often do not work well for user-generated data where the language styles differ significantly from the mainstream text. Here we present Context-Aware Rule Injection (CARI), an innovative method for formality style transfer (FST). CARI injects multiple rules into an end-to-end BERT-based encoder and decoder model. It learns to select optimal rules based on context. The intrinsic evaluation showed that CARI achieved the new highest performance on the FST benchmark dataset. Our extrinsic evaluation showed that CARI can greatly improve the regular pre-trained models performance on several tweet sentiment analysis tasks.