Do you want to publish a course? Click here

A photogrammetric method for target monitoring inside the MEG II detector

120   0   0.0 ( 0 )
 Added by Francesco Renga
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

An automatic target monitoring method based on photographs taken by a CMOS photo-camera has been developed for the MEG II detector. The technique could be adapted for other fixed-target experiments requiring good knowledge of their target position to avoid biases and systematic errors in measuring the trajectories of the outcoming particles. A CMOS-based, high resolution, high radiation tolerant and high magnetic field resistant photo-camera was mounted inside the MEG II detector at the Paul Scherrer Institute (Switzerland). MEG II is used to search for lepton flavour violation in muon decays. The photogrammetric methods challenges, affecting measurements of low momentum particles tracks, are high magnetic field of the spectrometer, high radiation levels, tight space constraints, and the need to limit the material budget in the tracking volume. The camera is focused on dot pattern drawn on the thin MEG II target, about 1 m away from the detector endcaps where the photo-camera is placed. Target movements and deformations are monitored by comparing images of the dots taken at various times during the measurement. The images are acquired with a Raspberry board and analyzed using a custom software. Global alignment to the spectrometer is guaranteed by corner cubes placed on the target support. As a result, the target monitoring fulfils the needs of the experiment.



rate research

Read More

The reconstruction of the positron trajectory in the MEG-II experiment searching for the $mu^+ to e^+ gamma$ decay uses a cylindrical drift chamber operated with a helium-isobutane gas mixture. A stable performance of the detector in terms of its electron drift properties, avalanche multiplication, and with a gas mixture of controlled composition and purity has to be provided and continuously monitored. In this paper we describe the strategies adopted to meet the requirements imposed by the target sensitivity of MEG-II, including the construction and commissioning of a small chamber for an online monitoring of the gas quality.
We describe and show results of a photographic technique for continuously monitoring the position, orientation, and shape of a thin-film muon stopping target for the MEG II experiment. The measurement is complicated by the target being located in a region with 1.3 T magnetic field, significant radiation and having limited access. The technique achieves a measurement precision of 0.010 mm normal to and 0.030 mm parallel to the film surface, significantly better than required for the MEG II experiment.
123 - J. Adam , X. Bai , A. M. Baldini 2013
The MEG (Mu to Electron Gamma) experiment has been running at the Paul Scherrer Institut (PSI), Switzerland since 2008 to search for the decay meg by using one of the most intense continuous $mu^+$ beams in the world. This paper presents the MEG components: the positron spectrometer, including a thin target, a superconducting magnet, a set of drift chambers for measuring the muon decay vertex and the positron momentum, a timing counter for measuring the positron time, and a liquid xenon detector for measuring the photon energy, position and time. The trigger system, the read-out electronics and the data acquisition system are also presented in detail. The paper is completed with a description of the equipment and techniques developed for the calibration in time and energy and the simulation of the whole apparatus.
The MEG experiment, designed to search for the mu+->e+ gamma decay at a 10^-13 sensitivity level, completed data taking in 2013. In order to increase the sensitivity reach of the experiment by an order of magnitude to the level of 6 x 10-14 for the branching ratio, a total upgrade, involving substantial changes to the experiment, has been undertaken, known as MEG II. We present both the motivation for the upgrade and a detailed overview of the design of the experiment and of the expected detector performance.
We have developed a new laser-based time calibration system for the MEG II timing counter dedicated to timing measurement of positrons. The detector requires precise timing alignment between $sim,$500 scintillation counters. In this study, we present the calibration system which can directly measure the time offset of each counter relative to the laser-synchronized pulse. We thoroughly tested all the optical components and the uncertainty of this method is estimated to be 24 ps. In 2017, we installed the full system into the MEG II environment and performed a commissioning run. This method shows excellent stability and consistency with another method. The proposed system provides a precise timing alignment for SiPM-based timing detectors. It also has potential in areas such as TOF-PET.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا