No Arabic abstract
Document-level relation extraction (RE) poses new challenges compared to its sentence-level counterpart. One document commonly contains multiple entity pairs, and one entity pair occurs multiple times in the document associated with multiple possible relations. In this paper, we propose two novel techniques, adaptive thresholding and localized context pooling, to solve the multi-label and multi-entity problems. The adaptive thresholding replaces the global threshold for multi-label classification in the prior work with a learnable entities-dependent threshold. The localized context pooling directly transfers attention from pre-trained language models to locate relevant context that is useful to decide the relation. We experiment on three document-level RE benchmark datasets: DocRED, a recently released large-scale RE dataset, and two datasets CDRand GDA in the biomedical domain. Our ATLOP (Adaptive Thresholding and Localized cOntext Pooling) model achieves an F1 score of 63.4, and also significantly outperforms existing models on both CDR and GDA.
In document-level relation extraction (DocRE), graph structure is generally used to encode relation information in the input document to classify the relation category between each entity pair, and has greatly advanced the DocRE task over the past several years. However, the learned graph representation universally models relation information between all entity pairs regardless of whether there are relationships between these entity pairs. Thus, those entity pairs without relationships disperse the attention of the encoder-classifier DocRE for ones with relationships, which may further hind the improvement of DocRE. To alleviate this issue, we propose a novel encoder-classifier-reconstructor model for DocRE. The reconstructor manages to reconstruct the ground-truth path dependencies from the graph representation, to ensure that the proposed DocRE model pays more attention to encode entity pairs with relationships in the training. Furthermore, the reconstructor is regarded as a relationship indicator to assist relation classification in the inference, which can further improve the performance of DocRE model. Experimental results on a large-scale DocRE dataset show that the proposed model can significantly improve the accuracy of relation extraction on a strong heterogeneous graph-based baseline.
Document-level relation extraction (DocRE) aims at extracting the semantic relations among entity pairs in a document. In DocRE, a subset of the sentences in a document, called the evidence sentences, might be sufficient for predicting the relation between a specific entity pair. To make better use of the evidence sentences, in this paper, we propose a three-stage evidence-enhanced DocRE framework consisting of joint relation and evidence extraction, evidence-centered relation extraction (RE), and fusion of extraction results. We first jointly train an RE model with a simple and memory-efficient evidence extraction model. Then, we construct pseudo documents based on the extracted evidence sentences and run the RE model again. Finally, we fuse the extraction results of the first two stages using a blending layer and make a final prediction. Extensive experiments show that our proposed framework achieves state-of-the-art performance on the DocRED dataset, outperforming the second-best method by 0.76/0.82 Ign F1/F1. In particular, our method significantly improves the performance on inter-sentence relations by 1.23 Inter F1.
Document-level relation extraction aims to extract relations among multiple entity pairs from a document. Previously proposed graph-based or transformer-based models utilize the entities independently, regardless of global information among relational triples. This paper approaches the problem by predicting an entity-level relation matrix to capture local and global information, parallel to the semantic segmentation task in computer vision. Herein, we propose a Document U-shaped Network for document-level relation extraction. Specifically, we leverage an encoder module to capture the context information of entities and a U-shaped segmentation module over the image-style feature map to capture global interdependency among triples. Experimental results show that our approach can obtain state-of-the-art performance on three benchmark datasets DocRED, CDR, and GDA.
Document-level relation extraction (DocRE) models generally use graph networks to implicitly model the reasoning skill (i.e., pattern recognition, logical reasoning, coreference reasoning, etc.) related to the relation between one entity pair in a document. In this paper, we propose a novel discriminative reasoning framework to explicitly model the paths of these reasoning skills between each entity pair in this document. Thus, a discriminative reasoning network is designed to estimate the relation probability distribution of different reasoning paths based on the constructed graph and vectorized document contexts for each entity pair, thereby recognizing their relation. Experimental results show that our method outperforms the previous state-of-the-art performance on the large-scale DocRE dataset. The code is publicly available at https://github.com/xwjim/DRN.
Most information extraction methods focus on binary relations expressed within single sentences. In high-value domains, however, $n$-ary relations are of great demand (e.g., drug-gene-mutation interactions in precision oncology). Such relations often involve entity mentions that are far apart in the document, yet existing work on cross-sentence relation extraction is generally confined to small text spans (e.g., three consecutive sentences), which severely limits recall. In this paper, we propose a novel multiscale neural architecture for document-level $n$-ary relation extraction. Our system combines representations learned over various text spans throughout the document and across the subrelation hierarchy. Widening the systems purview to the entire document maximizes potential recall. Moreover, by integrating weak signals across the document, multiscale modeling increases precision, even in the presence of noisy labels from distant supervision. Experiments on biomedical machine reading show that our approach substantially outperforms previous $n$-ary relation extraction methods.