Do you want to publish a course? Click here

Dual Effects of Ram Pressure on Star Formation in Multi-phase Disk Galaxies with Strong Stellar Feedback

87   0   0.0 ( 0 )
 Added by Jaehyun Lee
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the impact of ram pressure stripping due to the intracluster medium (ICM) on star-forming disk galaxies with a multi-phase interstellar medium (ISM) maintained by strong stellar feedback. We carry out radiation-hydrodynamics simulations of an isolated disk galaxy embedded in a 10^11 Msun dark matter halo with various ICM winds mimicking the cluster outskirts (moderate) and the central environment (strong). We find that both star formation quenching and triggering occur in ram pressure-stripped galaxies, depending on the strength of the winds. HI and H$_2$ in the outer galactic disk are significantly stripped in the presence of the moderate winds, whereas turbulent pressure provides support against ram pressure in the central region where star formation is active. Moderate ICM winds facilitate gas collapsing, increasing the total star formation rates by ~40% when the wind is oriented face-on or ~80% when it is edge-on. In contrast, strong winds rapidly blow away neutral and molecular hydrogen gas from the galaxy, suppressing the star formation by a factor of two within ~200 Myr. Dense gas clumps with N_H > 10 Msun pc^-2 are easily identified in extraplanar regions, but no significant young stellar populations are found in such clumps. In our attempts to enhance radiative cooling by adopting a colder ICM of T=10^6K, only a few additional stars are formed in the tail region, even if the amount of newly cooled gas increases by an order of magnitude.



rate research

Read More

We investigate the effects of ram pressure stripping on gas-rich disk galaxies in the cluster environment. Ram pressure stripping principally effects the atomic gas in disk galaxies, stripping away outer disk gas to a truncation radius. We demonstrate that the drag force exerted on truncated gas disks is passed to the stellar disk, and surrounding dark matter through their mutual gravity. Using a toy model of ram pressure stripping, we show that this can drag a stellar disk and dark matter cusp off centre within its dark matter halo by several kiloparsecs. We present a simple analytical description of this process that predicts the drag force strength and its dependency on ram pressures and disk galaxy properties to first order. The motion of the disk can result in temporary deformation of the stellar disk. However we demonstrate that the key source of stellar disk heating is the removal of the gas potential from within the disk. This can result in disk thickening by approximately a factor of two in gas-rich disks.
We study galaxies undergoing ram pressure stripping in the Virgo cluster to examine whether we can identify any discernible trend in their star formation activity. We first use 48 galaxies undergoing different stages of stripping based on HI morphology, HI deficiency, and relative extent to the stellar disk, from the VIVA survey. We then employ a new scheme for galaxy classification which combines HI mass fractions and locations in projected phase space, resulting in a new sample of 365 galaxies. We utilize a variety of star formation tracers, which include g - r, WISE [3.4] - [12] colors, and starburstiness that are defined by stellar mass and star formation rates to compare the star formation activity of galaxies at different stripping stages. We find no clear evidence for enhancement in the integrated star formation activity of galaxies undergoing early to active stripping. We are instead able to capture the overall quenching of star formation activity with increasing degree of ram pressure stripping, in agreement with previous studies. Our results suggest that if there is any ram pressure stripping induced enhancement, it is at best locally modest, and galaxies undergoing enhancement make up a small fraction of the total sample. Our results also indicate that it is possible to trace galaxies at different stages of stripping with the combination of HI gas content and location in projected phase space, which can be extended to other galaxy clusters that lack high-resolution HI imaging.
(Abridged) We perform high resolution 2D hydrodynamical simulations of face-on ram pressure stripping (RPS) of disk galaxies to compile a comprehensive parameter study varying galaxy properties (mass, vertical structure of the gas disk) and covering a large range of ICM conditions, reaching from high density environments like in cluster centres to low density environments typical for cluster outskirts or groups. We find that the ICM-ISM interaction proceeds in three phases: firstly the instantaneous stripping phase, secondly the dynamic intermediate phase, thirdly the quasi-stable continuous viscous stripping phase. The stripping efficiency depends slightly on the Mach number of the flow, however, the main parameter is the ram pressure. The stripping efficiency does not depend on the vertical structure and thickness of the gas disk. We discuss uncertainties in the classic estimate of the stripping radius of citet{gunn72}, and adapt the estimate used by cite{mori00} for spherical galaxies, (comparison of central pressure with ram pressure). We find that the latter estimate predicts the radius and mass of the gas disk remaining at the end of the second phase very well, and better than the citet{gunn72} criterion. From our simulations we conclude that gas disks of galaxies in high density environments are heavily truncated or even completely stripped, but also the gas disks of galaxies in low density environments are disturbed by the flow and back-falling material, so that they should also be pre-processed.
Exploiting the data from the GAs Stripping Phenomena in galaxies with MUSE (GASP) program, we compare the integrated Star Formation Rate- Mass relation (SFR-M_ast) relation of 42 cluster galaxies undergoing ram pressure stripping (stripping galaxies) to that of 32 field and cluster undisturbed galaxies. Theoretical predictions have so far led to contradictory conclusions about whether ram pressure can enhance the star formation in the gas disks and tails or not and until now a statistically significant observed sample of stripping galaxies was lacking. We find that stripping galaxies occupy the upper envelope of the control sample SFR-M_ast relation, showing a systematic enhancement of the SFR at any given mass. The star formation enhancement occurs in the disk (0.2 dex), and additional star formation takes place in the tails. Our results suggest that strong ram pressure stripping events can moderately enhance the star formation also in the disk prior to gas removal.
We investigate the effects of magnetic fields and turbulence on ram pressure stripping in elliptical galaxies using ideal magnetohydrodynamics simulations. We consider weakly-magnetised interstellar medium (ISM) characterised by subsonic turbulence, and two orientations of the magnetic fields in the intracluster medium (ICM) - parallel and perpendicular to the direction of the galaxy motion through the ICM. While the stronger turbulence enhances the ram pressure stripping mass loss, the magnetic fields tend to suppress the stripping rates, and the suppression is stronger for parallel fields. However, the effect of magnetic fields on the mass stripping rate is mild. Nevertheless, the morphology of the stripping tails depends significantly on the direction of the ICM magnetic field. The effect of the magnetic field geometry on the tail morphology is much stronger than that of the level of the ISM turbulence. The tail has a highly collimated shape for parallel fields, while it has a sheet-like morphology in the plane of the ICM magnetic field for perpendicular fields. The magnetic field in the tail is amplified irrespectively of the orientation of the ICM field. More strongly magnetised regions in the ram pressure stripping tails are expected to have systematically higher metallicity due to the strong concentration of the stripped ISM than the less magnetised regions. Strong dependence of the morphology of the stripped ISM on the magnetic field could potentially be used to constrain the relative orientation of the ram pressure direction and the dominant component of the ICM magnetic field.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا