Do you want to publish a course? Click here

Operando observation of reversible oxygen migration and phase transitions in ferroelectric devices

145   0   0.0 ( 0 )
 Added by Pavan Nukala
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Unconventional ferroelectricity, robust at reduced nanoscale sizes, exhibited by hafnia-based thin-films presents tremendous opportunities in nanoelectronics. However, the exact nature of polarization switching remains controversial. Here, we investigate epitaxial Hf0.5Zr0.5O2 (HZO) capacitors, interfaced with oxygen conducting metals (La0.67Sr0.33MnO3, LSMO) as electrodes, using atomic resolution electron microscopy while in situ electrical biasing. By direct oxygen imaging, we observe reversible oxygen vacancy migration from the bottom to the top electrode through HZO and reveal associated reversible structural phase transitions in the epitaxial LSMO and HZO layers. We follow the phase transition pathways at the atomic scale and identify that these mechanisms are at play both in tunnel junctions and ferroelectric capacitors switched with sub-millisecond pulses. Our results unmistakably demonstrate that oxygen voltammetry and polarization switching are intertwined in these materials.



rate research

Read More

262 - M. H. Shao , H. F. Liu , R. He 2021
Ferroelectricity, especially in hafnia-based thin films at nanosizes, has been rejuvenated in the fields of low-power, nonvolatile and Si-compatible modern memory and logic applications. Despite tremendous efforts to explore the formation of the metastable ferroelectric phase and the polarization degradation during field cycling, the ability of oxygen vacancy to exactly engineer and switch polarization remains to be elucidated. Here we report reversibly electrochemical control of ferroelectricity in Hf$_{0.5}$Zr$_{0.5}$O$_2$ (HZO) heterostructures with a mixed ionic-electronic LaSrMnO$_3$ electrode, achieving a hard breakdown field more than 18 MV/cm, over fourfold as high as that of typical HZO. The electrical extraction and insertion of oxygen into HZO is macroscopically characterized and atomically imaged in situ. Utilizing this reversible process, we achieved multiple polarization states and even repeatedly repaired the damaged ferroelectricity by reversed negative electric fields. Our study demonstrates the robust and switchable ferroelectricity in hafnia oxide distinctly associated with oxygen vacancy and opens up opportunities to recover, manipulate, and utilize rich ferroelectric functionalities for advanced ferroelectric functionality to empower the existing Si-based electronics such as multi-bit storage.
104 - Kun Han , Hanyu Wang , Liang Wu 2021
Metal-insulator transitions (MIT),an intriguing correlated phenomenon induced by the subtle competition of the electrons repulsive Coulomb interaction and kinetic energy, is of great potential use for electronic applications due to the dramatic change in resistivity. Here, we demonstrate a reversible control of MIT in VO2 films via oxygen stoichiometry engineering. By facilely depositing and dissolving a water-soluble yet oxygen-active Sr3Al2O6 capping layer atop the VO2 at room temperature, oxygen ions can reversibly migrate between VO2 and Sr3Al2O6, resulting in a gradual suppression and a complete recovery of MIT in VO2. The migration of the oxygen ions is evidenced in a combination of transport measurement, structural characterization and first-principles calculations. This approach of chemically-induced oxygen migration using a water-dissolvable adjacent layer could be useful for advanced electronic and iontronic devices and studying oxygen stoichiometry effects on the MIT.
Oxygen migration in tantalum oxide, a promising next-generation storage material, is studied using in-operando x-ray absorption spectromicroscopy and is used to microphysically describe accelerated evolution of conduction channel and device failure. The resulting ring-like patterns of oxygen concentration are modeled using thermophoretic forces and Fick diffusion, establishing the critical role of temperature-activated oxygen migration that has been under question lately.
110 - Tam Mayeshiba , Dane Morgan 2016
Fast oxygen transport materials are necessary for a range of technologies, including efficient and cost-effective solid oxide fuel cells, gas separation membranes, oxygen sensors, chemical looping devices, and memristors. Strain is often proposed as a method to enhance the performance of oxygen transport materials, but the magnitude of its effect and its underlying mechanisms are not well-understood, particularly in the widely-used perovskite-structured oxygen conductors. This work reports on an ab initio prediction of strain effects on migration energetics for nine perovskite systems of the form LaBO3, where B = [Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Ga]. Biaxial strain, as might be easily produced in epitaxial systems, is predicted to lead to approximately linear changes in migration energy. We find that tensile biaxial strain reduces the oxygen vacancy migration barrier across the systems studied by an average of 66 meV per percent strain for a single selected hop, with a low of 36 and a high of 89 meV decrease in migration barrier per percent strain across all systems. The estimated range for the change in migration barrier within each system is approximately 25 meV per percent strain when considering all hops. These results suggest that strain can significantly impact transport in these materials, e.g., a 2% tensile strain can increase the diffusion coefficient by about three orders of magnitude at 300 K (one order of magnitude at 500 {deg}C or 773 K) for one of the most strain-responsive materials calculated here (LaCrO3). We show that a simple elasticity model, which assumes only dilative or compressive strain in a cubic environment and a fixed migration volume, can qualitatively but not quantitatively model the strain dependence of the migration energy, suggesting that factors not captured by continuum elasticity play a significant role in the strain response.
Perovskites with fast oxygen ion conduction can enable technologies like solid oxide fuel cells. One component of fast oxygen ion conduction is low oxygen migration barrier. Here we apply ab initio methods on over 40 perovskites to produce a database of oxygen migration barriers ranging from 0.2 to 1.6 eV. Mining the database revealed that systems with low barriers also have low metal-oxygen bond strength, as measured by oxygen vacancy formation energy and oxygen p-band center energy. These correlations provide a powerful descriptor for the development of new oxygen ion conductors and may explain the poor stability of some of the best oxygen conducting perovskites under reducing conditions. Other commonly-cited measures of space, volume, or structure ideality showed only weak correlation with migration barrier. The lowest migration barriers (< 0.5 eV) belong to perovskites with non-transition-metal B-site cations, and may require vacancy-creation strategies that involve no dopants or low-association dopants for optimal performance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا