Do you want to publish a course? Click here

Using the Full-text Content of Academic Articles to Identify and Evaluate Algorithm Entities in the Domain of Natural Language Processing

136   0   0.0 ( 0 )
 Added by Chengzhi Zhang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In the era of big data, the advancement, improvement, and application of algorithms in academic research have played an important role in promoting the development of different disciplines. Academic papers in various disciplines, especially computer science, contain a large number of algorithms. Identifying the algorithms from the full-text content of papers can determine popular or classical algorithms in a specific field and help scholars gain a comprehensive understanding of the algorithms and even the field. To this end, this article takes the field of natural language processing (NLP) as an example and identifies algorithms from academic papers in the field. A dictionary of algorithms is constructed by manually annotating the contents of papers, and sentences containing algorithms in the dictionary are extracted through dictionary-based matching. The number of articles mentioning an algorithm is used as an indicator to analyze the influence of that algorithm. Our results reveal the algorithm with the highest influence in NLP papers and show that classification algorithms represent the largest proportion among the high-impact algorithms. In addition, the evolution of the influence of algorithms reflects the changes in research tasks and topics in the field, and the changes in the influence of different algorithms show different trends. As a preliminary exploration, this paper conducts an analysis of the impact of algorithms mentioned in the academic text, and the results can be used as training data for the automatic extraction of large-scale algorithms in the future. The methodology in this paper is domain-independent and can be applied to other domains.



rate research

Read More

110 - Heng Zhang , Chengzhi Zhang 2021
Research on the construction of traditional information science methodology taxonomy is mostly conducted manually. From the limited corpus, researchers have attempted to summarize some of the research methodology entities into several abstract levels (generally three levels); however, they have been unable to provide a more granular hierarchy. Moreover, updating the methodology taxonomy is traditionally a slow process. In this study, we collected full-text academic papers related to information science. First, we constructed a basic methodology taxonomy with three levels by manual annotation. Then, the word vectors of the research methodology entities were trained using the full-text data. Accordingly, the research methodology entities were clustered and the basic methodology taxonomy was expanded using the clustering results to obtain a methodology taxonomy with more levels. This study provides new concepts for constructing a methodology taxonomy of information science. The proposed methodology taxonomy is semi-automated; it is more detailed than conventional schemes and the speed of taxonomy renewal has been enhanced.
Diverse word representations have surged in most state-of-the-art natural language processing (NLP) applications. Nevertheless, how to efficiently evaluate such word embeddings in the informal domain such as Twitter or forums, remains an ongoing challenge due to the lack of sufficient evaluation dataset. We derived a large list of variant spelling pairs from UrbanDictionary with the automatic approaches of weakly-supervised pattern-based bootstrapping and self-training linear-chain conditional random field (CRF). With these extracted relation pairs we promote the odds of eliding the text normalization procedure of traditional NLP pipelines and directly adopting representations of non-standard words in the informal domain. Our code is available.
386 - Mariya Toneva , Leila Wehbe 2019
Neural networks models for NLP are typically implemented without the explicit encoding of language rules and yet they are able to break one performance record after another. This has generated a lot of research interest in interpreting the representations learned by these networks. We propose here a novel interpretation approach that relies on the only processing system we have that does understand language: the human brain. We use brain imaging recordings of subjects reading complex natural text to interpret word and sequence embeddings from 4 recent NLP models - ELMo, USE, BERT and Transformer-XL. We study how their representations differ across layer depth, context length, and attention type. Our results reveal differences in the context-related representations across these models. Further, in the transformer models, we find an interaction between layer depth and context length, and between layer depth and attention type. We finally hypothesize that altering BERT to better align with brain recordings would enable it to also better understand language. Probing the altered BERT using syntactic NLP tasks reveals that the model with increased brain-alignment outperforms the original model. Cognitive neuroscientists have already begun using NLP networks to study the brain, and this work closes the loop to allow the interaction between NLP and cognitive neuroscience to be a true cross-pollination.
The COVID-19 pandemic has had a significant impact on society, both because of the serious health effects of COVID-19 and because of public health measures implemented to slow its spread. Many of these difficulties are fundamentally information needs; attempts to address these needs have caused an information overload for both researchers and the public. Natural language processing (NLP), the branch of artificial intelligence that interprets human language, can be applied to address many of the information needs made urgent by the COVID-19 pandemic. This review surveys approximately 150 NLP studies and more than 50 systems and datasets addressing the COVID-19 pandemic. We detail work on four core NLP tasks: information retrieval, named entity recognition, literature-based discovery, and question answering. We also describe work that directly addresses aspects of the pandemic through four additional tasks: topic modeling, sentiment and emotion analysis, caseload forecasting, and misinformation detection. We conclude by discussing observable trends and remaining challenges.
Researchers worldwide are seeking to repurpose existing drugs or discover new drugs to counter the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A promising source of candidates for such studies is molecules that have been reported in the scientific literature to be drug-like in the context of coronavirus research. We report here on a project that leverages both human and artificial intelligence to detect references to drug-like molecules in free text. We engage non-expert humans to create a corpus of labeled text, use this labeled corpus to train a named entity recognition model, and employ the trained model to extract 10912 drug-like molecules from the COVID-19 Open Research Dataset Challenge (CORD-19) corpus of 198875 papers. Performance analyses show that our automated extraction model can achieve performance on par with that of non-expert humans.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا