Do you want to publish a course? Click here

On the Presence of a Universal Acceleration Scale in Elliptical Galaxies

117   0   0.0 ( 0 )
 Added by Kyu-Hyun Chae
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dark matter phenomena in rotationally supported galaxies exhibit a characteristic acceleration scale of $g_dagger approx 1.2times 10^{-10}$ m s$^{-2}$. Whether this acceleration is a manifestation of a universal scale, or merely an emergent property with an intrinsic scatter, has been debated in the literature. Here we investigate whether a universal acceleration scale exists in dispersion-supported galaxies using two uniform sets of integral field spectroscopy (IFS) data from SDSS-IV MaNGA and ATLAS$^{rm 3D}$. We apply the spherical Jeans equation to 15 MaNGA and 4 ATLAS$^{rm 3D}$ slow-rotator E0 (i.e., nearly spherical) galaxies. Velocity dispersion profiles for these galaxies are well determined with observational errors under control. Bayesian inference indicates that all 19 galaxies are consistent with a universal acceleration of $g_dagger=1.5_{-0.6}^{+0.9}times 10^{-10}$ m s$^{-2}$. Moreover, all 387 data points from the radial bins of the velocity dispersion profiles are consistent with a universal relation between the radial acceleration traced by dynamics and that predicted by the observed distribution of baryons. This universality remains if we include 12 additional non-E0 slow-rotator elliptical galaxies from ATLAS$^{rm 3D}$. Finally, the universal acceleration from MaNGA and ATLAS$^{rm 3D}$ is consistent with that for rotationally supported galaxies, so our results support the view that dark matter phenomenology in galaxies involves a universal acceleration scale.



rate research

Read More

This paper presents an alternative scenario to explain the observed properties of the Milky Way dwarf Spheroidals (MW dSphs). We show that instead of resulting from large amounts of dark matter (DM), the large velocity dispersions observed along their lines of sight can be entirely accounted for by dynamical heating of DM-free systems resulting from MW tidal shocks. Such a regime is expected if the progenitors of the MW dwarfs are infalling gas-dominated galaxies. In this case, gas lost through ram-pressure leads to a strong decrease of self-gravity, a phase during which stars can radially expand, while leaving a gas-free dSph in which tidal shocks can easily develop. The DM content of dSphs is widely derived from the measurement of the dSphs self-gravity acceleration projected along the line of sight. We show that the latter strongly anti-correlates with the dSph distance from the MW, and that it is matched in amplitude by the acceleration caused by MW tidal shocks on DM-free dSphs. If correct, this implies that the MW dSphs would have negligible DM content, putting in question, e.g., their use as targets for DM direct searches, or our understanding of the Local Group mass assembly history. Most of the progenitors of the MW dSphs are likely extremely tiny dIrrs, and deeper observations and more accurate modeling are necessary to infer their properties as well as to derive star formation histories of the faintest dSphs.
87 - Pavel Kroupa 2018
A central problem of contemporary physics is whether the law of gravity is non-Newtonian on galaxy scales. Rodrigues et al. argue that Milgromian gravitation, which solves the flat rotation curve problem without the need for dark matter particles, is ruled out at > 10{sigma} significance. To a large extent, this conclusion relies on galaxies with very uncertain distances and/or nearly edge-on orientations, where dust obscuration often becomes significant. Applying appropriate quality cuts to the data leaves only a handful of outliers to the predictions of Milgromian gravitation according to the analysis of Rodrigues et al., but even these outliers can be explained with Milgromian gravitation.
177 - Ortwin Gerhard 2010
Recent progress is summarized on the determination of the density distributions of stars and dark matter, stellar kinematics, and stellar population properties, in the extended, low surface brightness halo regions of elliptical galaxies. With integral field absorption spectroscopy and with planetary nebulae as tracers, velocity dispersion and rotation profiles have been followed to ~4 and ~5-8 effective radii, respectively, and in M87 to the outer edge at ~150 kpc. The results are generally consistent with the known dichotomy of elliptical galaxy types, but some galaxies show more complex rotation profiles in their halos and there is a higher incidence of misalignments, indicating triaxiality. Dynamical models have shown a range of slopes for the total mass profiles, and that the inner dark matter densities in ellipticals are higher than in spiral galaxies, indicating earlier assembly redshifts. Analysis of the hot X-ray emitting gas in X-ray bright ellipticals and comparison with dynamical mass determinations indicates that non-thermal components to the pressure may be important in the inner ~10 kpc, and that the properties of these systems are closely related to their group environments. First results on the outer halo stellar population properties do not yet give a clear picture. In the halo of one bright galaxy, lower [alpha/Fe] abundances indicate longer star formation histories pointing towards late accretion of the halo. This is consistent with independent evidence for on-going accretion, and suggests a connection to the observed size evolution of elliptical galaxies with redshift.
We use the Sloan Digital Sky Survey to investigate the properties of massive elliptical galaxies in the local Universe (zleq0.08) that have unusually blue optical colors. Through careful inspection, we distinguish elliptical from non-elliptical morphologies among a large sample of similarly blue galaxies with high central light concentrations (c_rgeq2.6). These blue ellipticals comprise 3.7 per cent of all c_rgeq2.6 galaxies with stellar masses between 10^10 and 10^11 h^{-2} {rm M}_{sun}. Using published fiber spectra diagnostics, we identify a unique subset of 172 non-star-forming ellipticals with distinctly blue urz colors and young (< 3 Gyr) light-weighted stellar ages. These recently quenched ellipticals (RQEs) have a number density of 2.7-4.7times 10^{-5},h^3,{rm Mpc}^{-3} and sufficient numbers above 2.5times10^{10} h^{-2} {rm M}_{sun} to account for more than half of the expected quiescent growth at late cosmic time assuming this phase lasts 0.5 Gyr. RQEs have properties that are consistent with a recent merger origin (i.e., they are strong `first-generation elliptical candidates), yet few involved a starburst strong enough to produce an E+A signature. The preferred environment of RQEs (90 per cent reside at the centers of < 3times 10^{12},h^{-1}{rm M}_{sun} groups) agrees well with the `small group scale predicted for maximally efficient spiral merging onto their halo center and rules out satellite-specific quenching processes. The high incidence of Seyfert and LINER activity in RQEs and their plausible descendents may heat the atmospheres of small host halos sufficiently to maintain quenching.
Outflows driven by active galactic nuclei (AGN) are an important channel for accreting supermassive black holes (SMBHs) to interact with their host galaxies and clusters. Properties of the outflows are however poorly constrained due to the lack of kinetically resolved data of the hot plasma that permeates the circumgalactic and intracluster space. In this work, we use a single parameter, outflow-to-accretion mass-loading factor $m=dot{M}_{rm out}/dot{M}_{rm BH}$, to characterize the outflows that mediate the interaction between SMBHs and their hosts. By modeling both M87 and Perseus, and comparing the simulated thermal profiles with the X-ray observations of these two systems, we demonstrate that $m$ can be constrained between $200-500$. This parameter corresponds to a bulk flow speed between $4,000-7,000,{rm km,s}^{-1}$ at around 1 kpc, and a thermalized outflow temperature between $10^{8.7}-10^{9},{rm K}$. Our results indicate that the dominant outflow speeds in giant elliptical galaxies and clusters are much lower than in the close vicinity of the SMBH, signaling an efficient coupling with and deceleration by the surrounding medium on length scales below 1 kpc. Consequently, AGNs may be efficient at launching outflows $sim10$ times more massive than previously uncovered by measurements of cold, obscuring material. We also examine the mass and velocity distribution of the cold gas, which ultimately forms a rotationally supported disk in simulated clusters. The rarity of such disks in observations indicates that further investigations are needed to understand the evolution of the cold gas after it forms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا