No Arabic abstract
Permeability is the key parameter for quantifying fluid flow in porous rocks. Knowledge of the spatial distribution of the connected pore space allows, in principle, to predict the permeability of a rock sample. However, limitations in feature resolution and approximations at microscopic scales have so far precluded systematic upscaling of permeability predictions. Here, we report fluid flow simulations in capillary network representations designed to overcome such limitations. Performed with an unprecedented level of accuracy in geometric approximation at microscale, the pore scale flow simulations predict experimental permeabilities measured at lab scale in the same rock sample without the need for calibration or correction. By applying the method to a broader class of representative geological samples, with permeability values covering two orders of magnitude, we obtain scaling relationships that reveal how mesoscale permeability emerges from microscopic capillary diameter and fluid velocity distributions.
This article provides an overview of the current state of digital rock technology, with emphasis on industrial applications. We show how imaging and image analysis can be applied for rock typing and modeling of end-point saturations. Different methods to obtain a digital model of the pore space from pore scale images are presented, and the strengths and weaknesses of the different methods are discussed. We also show how imaging bridges the different subjects of geology, petrophysics and reservoir simulations, by being a common denominator for results in all these subjects. Network modeling is compared to direct simulations on grid models, and their respective strengths are discussed. Finally we present an example of digital rock technology applied to a sandstone oil reservoir. Results from digital rock modeling are compared to results from traditional laboratory experiments. We highlight the mutual benefits from conducting both traditional experiments and digital rock modeling.
Using an analogy to the classical Stefan problem, we construct evolution equations for the fluid pore pressure on both sides of a propagating stress-induced damage front. Closed form expressions are derived for the position of the damage front as a function of time for the cases of thermally-induced damage as well as damage induced by over-pressure. We derive expressions for the flow rate during constant pressure fluid injection from the surface corresponding to a spherically shaped subsurface damage front. Finally, our model results suggest an interpretation of field data obtained during constant pressure fluid injection over the course of 16 days at an injection site near Desert Peak, NV.
The research on cold-atom interferometers gathers a large community of about 50 groups worldwide both in the academic and now in the industrial sectors. The interest in this sub-field of quantum sensing and metrology lies in the large panel of possible applications of cold-atom sensors for measuring inertial and gravitational signals with a high level of stability and accuracy. This review presents the evolution of the field over the last 30 years and focuses on the acceleration of the research effort in the last 10 years. The article describes the physics principle of cold-atom gravito-inertial sensors as well as the main parts of hardware and the expertise required when starting the design of such sensors. It then reviews the progress in the development of instruments measuring gravitational and inertial signals, with a highlight on the limitations to the performances of the sensors, on their applications, and on the latest directions of research.
SNOLAB is one of the deepest underground laboratories in the world with an overburden of 2092 m. The SNO+ detector is designed to achieve several fundamental physics goals as a low-background experiment, particularly measuring the Earths geoneutrino flux. Here we evaluate the effect of the 2 km overburden on the predicted crustal geoneutrino signal at SNO+. A refined 3D model of the 50 x 50 km upper crust surrounding the detector and a full calculation of survival probability are used to model the U and Th geoneutrino signal. Comparing this signal with that obtained by placing SNO+ at sea level, we highlight a $1.4^{+1.8}_{-0.9}$ TNU signal difference, corresponding to the ~5% of the total crustal contribution. Finally, the impact of the additional crust extending from sea level up to ~300 m was estimated.
In this paper, we study the effects of both the amount of open cell walls and their aperture sizes on solid foams permeability. FEM flow simulations are performed at both pore and macroscopic scales. For foams with fully interconnected pores, we obtain a robust power-law relationship between permeability and membrane aperture size. This result owns to the local pressure drop mechanism through the membrane aperture as described by Sampson for fluid flow through a circular orifice in a thin plate. Based on this local law, pore-network simulation of simple flow is used and is shown to reproduce successfully FEM results. This low computational cost method allowed to study in detail the effects of the open wall amount on percolation, percolating porosity and permeability. A model of effective permeability is proposed and shows ability to reproduce the results of network simulations. Finally, an experimental validation of the theoretical model on well controlled solid foam is presented.