Do you want to publish a course? Click here

Exploring Overcomplete Representations for Single Image Deraining using CNNs

79   0   0.0 ( 0 )
 Added by Rajeev Yasarla
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Removal of rain streaks from a single image is an extremely challenging problem since the rainy images often contain rain streaks of different size, shape, direction and density. Most recent methods for deraining use a deep network following a generic encoder-decoder architecture which captures low-level features across the initial layers and high-level features in the deeper layers. For the task of deraining, the rain streaks which are to be removed are relatively small and focusing much on global features is not an efficient way to solve the problem. To this end, we propose using an overcomplete convolutional network architecture which gives special attention in learning local structures by restraining the receptive field of filters. We combine it with U-Net so that it does not lose out on the global structures as well while focusing more on low-level features, to compute the derained image. The proposed network called, Over-and-Under Complete Deraining Network (OUCD), consists of two branches: overcomplete branch which is confined to small receptive field size in order to focus on the local structures and an undercomplete branch that has larger receptive fields to primarily focus on global structures. Extensive experiments on synthetic and real datasets demonstrate that the proposed method achieves significant improvements over the recent state-of-the-art methods.



rate research

Read More

162 - Xiang Chen , Yufeng Huang , Lei Xu 2021
Rain streaks bring serious blurring and visual quality degradation, which often vary in size, direction and density. Current CNN-based methods achieve encouraging performance, while are limited to depict rain characteristics and recover image details in the poor visibility environment. To address these issues, we present a Multi-scale Hourglass Hierarchical Fusion Network (MH2F-Net) in end-to-end manner, to exactly captures rain streak features with multi-scale extraction, hierarchical distillation and information aggregation. For better extracting the features, a novel Multi-scale Hourglass Extraction Block (MHEB) is proposed to get local and global features across different scales through down- and up-sample process. Besides, a Hierarchical Attentive Distillation Block (HADB) then employs the dual attention feature responses to adaptively recalibrate the hierarchical features and eliminate the redundant ones. Further, we introduce a Residual Projected Feature Fusion (RPFF) strategy to progressively discriminate feature learning and aggregate different features instead of directly concatenating or adding. Extensive experiments on both synthetic and real rainy datasets demonstrate the effectiveness of the designed MH2F-Net by comparing with recent state-of-the-art deraining algorithms. Our source code will be available on the GitHub: https://github.com/cxtalk/MH2F-Net.
489 - Hong Wang , Qi Xie , Qian Zhao 2021
As a common weather, rain streaks adversely degrade the image quality. Hence, removing rains from an image has become an important issue in the field. To handle such an ill-posed single image deraining task, in this paper, we specifically build a novel deep architecture, called rain convolutional dictionary network (RCDNet), which embeds the intrinsic priors of rain streaks and has clear interpretability. In specific, we first establish a RCD model for representing rain streaks and utilize the proximal gradient descent technique to design an iterative algorithm only containing simple operators for solving the model. By unfolding it, we then build the RCDNet in which every network module has clear physical meanings and corresponds to each operation involved in the algorithm. This good interpretability greatly facilitates an easy visualization and analysis on what happens inside the network and why it works well in inference process. Moreover, taking into account the domain gap issue in real scenarios, we further design a novel dynamic RCDNet, where the rain kernels can be dynamically inferred corresponding to input rainy images and then help shrink the space for rain layer estimation with few rain maps so as to ensure a fine generalization performance in the inconsistent scenarios of rain types between training and testing data. By end-to-end training such an interpretable network, all involved rain kernels and proximal operators can be automatically extracted, faithfully characterizing the features of both rain and clean background layers, and thus naturally lead to better deraining performance. Comprehensive experiments substantiate the superiority of our method, especially on its well generality to diverse testing scenarios and good interpretability for all its modules. Code is available in emph{url{https://github.com/hongwang01/DRCDNet}}.
120 - Xu Qin , Zhilin Wang 2019
Images captured under complicated rain conditions often suffer from noticeable degradation of visibility. The rain models generally introduce diversity visibility degradation, which includes rain streak, rain drop as well as rain mist. Numerous existing single image deraining methods focus on the only one type rain model, which does not have strong generalization ability. In this paper, we propose a novel end-to-end Neuron Attention Stage-by-Stage Net (NASNet), which can solve all types of rain model tasks efficiently. For one thing, we pay more attention on the Neuron relationship and propose a lightweight Neuron Attention (NA) architectural mechanism. It can adaptively recalibrate neuron-wise feature responses by modelling interdependencies and mutual influence between neurons. Our NA architecture consists of Depthwise Conv and Pointwise Conv, which has slight computation cost and higher performance than SE block by our contrasted experiments. For another, we propose a stage-by-stage unified pattern network architecture, the stage-by-stage strategy guides the later stage by incorporating the useful information in previous stage. We concatenate and fuse stage-level information dynamically by NA module. Extensive experiments demonstrate that our proposed NASNet significantly outperforms the state-of-theart methods by a large margin in terms of both quantitative and qualitative measures on all six public large-scale datasets for three rain model tasks.
Image deraining is an important image processing task as rain streaks not only severely degrade the visual quality of images but also significantly affect the performance of high-level vision tasks. Traditional methods progressively remove rain streaks via different recurrent neural networks. However, these methods fail to yield plausible rain-free images in an efficient manner. In this paper, we propose a residual squeeze-and-excitation network called RSEN for fast image deraining as well as superior deraining performance compared with state-of-the-art approaches. Specifically, RSEN adopts a lightweight encoder-decoder architecture to conduct rain removal in one stage. Besides, both encoder and decoder adopt a novel residual squeeze-and-excitation block as the core of feature extraction, which contains a residual block for producing hierarchical features, followed by a squeeze-and-excitation block for channel-wisely enhancing the resulted hierarchical features. Experimental results demonstrate that our method can not only considerably reduce the computational complexity but also significantly improve the deraining performance compared with state-of-the-art methods.
Most methods for medical image segmentation use U-Net or its variants as they have been successful in most of the applications. After a detailed analysis of these traditional encoder-decoder based approaches, we observed that they perform poorly in detecting smaller structures and are unable to segment boundary regions precisely. This issue can be attributed to the increase in receptive field size as we go deeper into the encoder. The extra focus on learning high level features causes the U-Net based approaches to learn less information about low-level features which are crucial for detecting small structures. To overcome this issue, we propose using an overcomplete convolutional architecture where we project our input image into a higher dimension such that we constrain the receptive field from increasing in the deep layers of the network. We design a new architecture for image segmentation- KiU-Net which has two branches: (1) an overcomplete convolutional network Kite-Net which learns to capture fine details and accurate edges of the input, and (2) U-Net which learns high level features. Furthermore, we also propose KiU-Net 3D which is a 3D convolutional architecture for volumetric segmentation. We perform a detailed study of KiU-Net by performing experiments on five different datasets covering various image modalities like ultrasound (US), magnetic resonance imaging (MRI), computed tomography (CT), microscopic and fundus images. The proposed method achieves a better performance as compared to all the recent methods with an additional benefit of fewer parameters and faster convergence. Additionally, we also demonstrate that the extensions of KiU-Net based on residual blocks and dense blocks result in further performance improvements. The implementation of KiU-Net can be found here: https://github.com/jeya-maria-jose/KiU-Net-pytorch
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا