No Arabic abstract
We study spatially coupled LDPC codes that allow access to sub-blocks much smaller than the full code block. Sub-block access is realized by a semi-global decoder that decodes a chosen target sub-block by only accessing the target, plus a prescribed number of helper sub-blocks adjacent in the code chain. This paper develops a theoretical methodology for analyzing the semi-global decoding performance of spatially coupled LDPC codes constructed from protographs. The main result shows that semi-global decoding thresholds can be derived from certain thresholds we define for the single-sub-block graph. These characterizing thresholds are also used for deriving lower bounds on the decoders performance over channels with variability across sub-blocks, which are motivated by applications in data-storage.
A new type of spatially coupled low-density parity-check (SC-LDPC) codes motivated by practical storage applications is presented. SC-LDPCL codes (suffix L stands for locality) can be decoded locally at the level of sub-blocks that are much smaller than the full code block, thus offering flexible access to the coded information alongside the strong reliability of the global full-block decoding. Toward that, we propose constructions of SC-LDPCL codes that allow controlling the trade-off between local and global correction performance. In addition to local and global decoding, the paper develops a density-evolution analysis for a decoding mode we call semi-global decoding, in which the decoder has access to the requested sub-block plus a prescribed number of sub-blocks around it. SC-LDPCL codes are also studied under a channel model with variability across sub-blocks, for which decoding-performance lower bounds are derived.
In this paper, we propose a non-uniform windowed decoder for multi-dimensional spatially-coupled LDPC (MD-SC-LDPC) codes over the binary erasure channel. An MD-SC-LDPC code is constructed by connecting together several SC-LDPC codes into one larger code that provides major benefits over a variety of channel models. In general, SC codes allow for low-latency windowed decoding. While a standard windowed decoder can be naively applied, such an approach does not fully utilize the unique structure of MD-SC-LDPC codes. In this paper, we propose and analyze a novel non-uniform decoder to provide more flexibility between latency and reliability. Our theoretical derivations and empirical results show that our non-uniform decoder greatly improves upon the standard windowed decoder in terms of design flexibility, latency, and complexity.
Linear nested codes, where two or more sub-codes are nested in a global code, have been proposed as candidates for reliable multi-terminal communication. In this paper, we consider nested array-based spatially coupled low-density parity-check (SC-LDPC) codes and propose a line-counting based optimization scheme for minimizing the number of dominant absorbing sets in order to improve its performance in the high signal-to-noise ratio regime. Since the parity-check matrices of different nested sub-codes partially overlap, the optimization of one nested sub-code imposes constraints on the optimization of the other sub-codes. To tackle these constraints, a multi-step optimization process is applied first to one of the nested codes, then sequential optimization of the remaining nested codes is carried out based on the constraints imposed by the previously optimized sub-codes. Results show that the order of optimization has a significant impact on the number of dominant absorbing sets in the Tanner graph of the code, resulting in a tradeoff between the performance of a nested code structure and its optimization sequence: the code which is optimized without constraints has fewer harmful structures than the code which is optimized with constraints. We also show that for certain code parameters, dominant absorbing sets in the Tanner graphs of all nested codes are completely removed using our proposed optimization strategy.
SC-LDPC codes with sub-block locality can be decoded locally at the level of sub-blocks that are much smaller than the full code block, thus providing fast access to the coded information. The same code can also be decoded globally using the entire code block, for increased data reliability. In this paper, we pursue the analysis and design of such codes from both finite-length and asymptotic lenses. This mixed approach has rarely been applied in designing SC codes, but it is beneficial for optimizing code graphs for local and global performance simultaneously. Our proposed framework consists of two steps: 1) designing the local code for both threshold and cycle counts, and 2) designing the coupling of local codes for best cycle count in the global design.
This paper presents a theoretical study of a new type of LDPC codes motivated by practical storage applications. LDPCL codes (suffix L represents locality) are LDPC codes that can be decoded either as usual over the full code block, or locally when a smaller sub-block is accessed (to reduce latency). LDPCL codes are designed to maximize the error-correction performance vs. rate in the usual (global) mode, while at the same time providing a certain performance in the local mode. We develop a theoretical framework for the design of LDPCL codes. Our results include a design tool to construct an LDPC code with two data-protection levels: local and global. We derive theoretical results supporting this tool and we show how to achieve capacity with it. A trade-off between the gap to capacity and the number of full-block accesses is studied, and a finite-length analysis of ML decoding is performed to exemplify a trade-off between the locality capability and the full-block error-correcting capability.