Scaling limit of the ${cal Z}_2$ invariant inhomogeneous six-vertex model


Abstract in English

The work contains a detailed study of the scaling limit of a certain critical, integrable inhomogeneous six-vertex model subject to twisted boundary conditions. It is based on a numerical analysis of the Bethe ansatz equations as well as the powerful analytic technique of the ODE/IQFT correspondence. The results indicate that the critical behaviour of the lattice system is described by the gauged ${rm SL}(2)$ WZW model with certain boundary and reality conditions imposed on the fields. Our proposal revises and extends the conjectured relation between the lattice system and the Euclidean black hole non-linear sigma model that was made in the 2011 paper of Ikhlef, Jacobsen and Saleur.

Download