The past years have seen rapid progress in the classification of topological materials. These diagnostical methods are increasingly getting explored in the pertinent context of magnetic structures. We report on a general class of electronic configurations within a set of anti-ferromagnetic-compatible space groups that are necessarily topological. Interestingly, we find a systematic correspondence between these anti-ferromagnetic phases to necessarily nontrivial topological ferro/ferrimagnetic counterparts that are readily obtained through physically motivated perturbations. Addressing the exhaustive list of magnetic space groups in which this mechanism occurs, we also verify its presence on planes in 3D systems that were deemed trivial in existing classification schemes. This leads to the formulation of the concept of subdimensional topologies, featuring non-triviality within part of the system that coexists with stable Weyl points away from these planes, thereby uncovering novel topological materials in the full 3D sense that have readily observable features in their bulk and surface spectrum.