Do you want to publish a course? Click here

Balancing quarantine and self-distancing measures in adaptive epidemic networks

147   0   0.0 ( 0 )
 Added by Christian Kuehn
 Publication date 2020
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

We study the relative importance of two key control measures for epidemic spreading: endogenous social self-distancing and exogenous imposed quarantine. We use the framework of adaptive networks, moment-closure, and ordinary differential equations (ODEs) to introduce several novel models based upon susceptible-infected-recovered (SIR) dynamics. First, we compare computationally expensive, adaptive network simulations with their corresponding computationally highly efficient ODE equivalents and find excellent agreement. Second, we discover that there exists a relatively simple critical curve in parameter space for the epidemic threshold, which strongly suggests that there is a mutual compensation effect between the two mitigation strategies: as long as social distancing and quarantine measures are both sufficiently strong, large outbreaks are prevented. Third, we study the total number of infected and the maximum peak during large outbreaks using a combination of analytical estimates and numerical simulations. Also for large outbreaks we find a similar compensation effect as for the epidemic threshold. This suggests that if there is little incentive for social distancing within a population, drastic quarantining is required, and vice versa. Both pure scenarios are unrealistic in practice. Our models show that only a combination of measures is likely to succeed to control epidemic spreading. Fourth, we analytically compute an upper bound for the total number of infected on adaptive networks, using integral estimates in combination with the moment-closure approximation on the level of an observable. This is a methodological innovation. Our method allows us to elegantly and quickly check and cross-validate various conjectures about the relevance of different network control measures.



rate research

Read More

Public health services are constantly searching for new ways to reduce the spread of infectious diseases, such as public vaccination of asymptomatic individuals, quarantine (isolation) and treatment of symptomatic individuals. Epidemic models have a long history of assisting in public health planning and policy making. In this paper, we introduce epidemic models including variable population size, degree-related imperfect vaccination and quarantine on scale-free networks. More specifically, the models are formulated both on the population with and without permanent natural immunity to infection, which corresponds respectively to the susceptible-vaccinated-infected-quarantined-recovered (SVIQR) model and the susceptible-vaccinated-infected-quarantined (SVIQS) model. We develop different mathematical methods and techniques to study the dynamics of two models, including the basic reproduction number, the global stability of disease-free and endemic equilibria. For the SVIQR model, we show that the system exhibits a forward bifurcation. Meanwhile, the disease-free and unique endemic equilibria are shown to be globally asymptotically stable by constructing suitable Lyapunov functions. For the SVIQS model, conditions ensuring the occurrence of multiple endemic equilibria are derived. Under certain conditions, this system cannot undergo a backward bifurcation. The global asymptotical stability of disease-free equilibrium, and the persistence of the disease are proved. The endemic equilibrium is shown to be globally attractive by using monotone iterative technique. Finally, stochastic network simulations yield quantitative agreement with the deterministic mean-field approach.
We consider an epidemic process on adaptive activity-driven temporal networks, with adaptive behaviour modelled as a change in activity and attractiveness due to infection. By using a mean-field approach, we derive an analytical estimate of the epidemic threshold for SIS and SIR epidemic models for a general adaptive strategy, which strongly depends on the correlations between activity and attractiveness in the susceptible and infected states. We focus on strong social distancing, implementing two types of quarantine inspired by recent real case studies: an active quarantine, in which the population compensates the loss of links rewiring the ineffective connections towards non-quarantining nodes, and an inactive quarantine, in which the links with quarantined nodes are not rewired. Both strategies feature the same epidemic threshold but they strongly differ in the dynamics of active phase. We show that the active quarantine is extremely less effective in reducing the impact of the epidemic in the active phase compared to the inactive one, and that in SIR model a late adoption of measures requires inactive quarantine to reach containment.
The outbreak of the novel coronavirus, COVID-19, has been declared a pandemic by the WHO. The structures of social contact critically determine the spread of the infection and, in the absence of vaccines, the control of these structures through large-scale social distancing measures appears to be the most effective means of mitigation. Here we use an age-structured SIR model with social contact matrices obtained from surveys and Bayesian imputation to study the progress of the COVID-19 epidemic in India. The basic reproductive ratio R0 and its time-dependent generalization are computed based on case data, age distribution and social contact structure. The impact of social distancing measures - workplace non-attendance, school closure, lockdown - and their efficacy with durations are then investigated. A three-week lockdown is found insufficient to prevent a resurgence and, instead, protocols of sustained lockdown with periodic relaxation are suggested. Forecasts are provided for the reduction in age-structured morbidity and mortality as a result of these measures. Our study underlines the importance of age and social contact structures in assessing the country-specific impact of mitigatory social distancing.
We show that precise knowledge of epidemic transmission parameters is not required to build an informative model of the spread of disease. We propose a detailed model of the topology of the contact network under various external control regimes and demonstrate that this is sufficient to capture the salient dynamical characteristics and to inform decisions. Contact between individuals in the community is characterised by a contact graph, the structure of that contact graph is selected to mimic community control measures. Our model of city-level transmission of an infectious agent (SEIR model) characterises spread via a (a) scale-free contact network (no control); (b) a random graph (elimination of mass gatherings); and (c) small world lattice (partial to full lockdown -- social distancing). This model exhibits good qualitative agreement between simulation and data from the 2020 pandemic spread of coronavirus. Estimates of the relevant rate parameters of the SEIR model are obtained and we demonstrate the robustness of our model predictions under uncertainty of those estimates. The social context and utility of this work is identified, contributing to a highly effective pandemic response in Western Australia.
The COVID-19 pandemic has challenged authorities at different levels of government administration around the globe. When faced with diseases of this severity, it is useful for the authorities to have prediction tools to estimate in advance the impact on the health system and the human, material, and economic resources that will be necessary. In this paper, we construct an extended Susceptible-Exposed-Infected-Recovered model that incorporates the social structure of Mar del Plata, the $4^circ$ most inhabited city in Argentina and head of the Municipality of General Pueyrredon. Moreover, we consider detailed partitions of infected individuals according to the illness severity, as well as data of local health resources, to bring these predictions closer to the local reality. Tuning the corresponding epidemic parameters for COVID-19, we study an alternating quarantine strategy, in which a part of the population can circulate without restrictions at any time, while the rest is equally divided into two groups and goes on successive periods of normal activity and lockdown, each one with a duration of $tau$ days. Besides, we implement a random testing strategy over the population. We found that $tau = 7$ is a good choice for the quarantine strategy since it matches with the weekly cycle as it reduces the infected population. Focusing on the health system, projecting from the situation as of September 30, we foresee a difficulty to avoid saturation of ICU, given the extremely low levels of mobility that would be required. In the worst case, our model estimates that four thousand deaths would occur, of which 30% could be avoided with proper medical attention. Nonetheless, we found that aggressive testing would allow an increase in the percentage of people that can circulate without restrictions, being the equipment required to deal with the additional critical patients relatively low.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا