Do you want to publish a course? Click here

Galois reconstruction of Artin-Tate $mathbb{R}$-motivic spectra

120   0   0.0 ( 0 )
 Added by Andrew Senger
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We explain how to reconstruct the category of Artin-Tate $mathbb{R}$-motivic spectra as a deformation of the purely topological $C_2$-equivariant stable category. The special fiber of this deformation is algebraic, and equivalent to an appropriate category of $C_2$-equivariant sheaves on the moduli stack of formal groups. As such, our results directly generalize the cofiber of $tau$ philosophy that has revolutionized classical stable homotopy theory. A key observation is that the Artin-Tate subcategory of $mathbb{R}$-motivic spectra is easier to understand than the previously studied cellular subcategory. In particular, the Artin-Tate category contains a variant of the $tau$ map, which is a feature conspicuously absent from the cellular category.



rate research

Read More

200 - J. Heller , K. Ormsby 2014
For a finite Galois extension of fields L/k with Galois group G, we study a functor from the G-equivariant stable homotopy category to the stable motivic homotopy category over k induced by the classical Galois correspondence. We show that after completing at a prime and eta (the motivic Hopf map) this results in a full and faithful embedding whenever k is real closed and L = k[i]. It is a full and faithful embedding after eta-completion if a motivic version of Serres finiteness theorem is valid. We produce strong necessary conditions on the field extension L/k for this functor to be full and faithful. Along the way, we produce several results on the stable C_2-equivariant Betti realization functor and prove convergence theorems for the p-primary C_2-equivariant Adams spectral sequence.
216 - Kyle M. Ormsby 2010
We provide a complete analysis of the motivic Adams spectral sequences converging to the bigraded coefficients of the 2-complete algebraic Johnson-Wilson spectra BPGL<n> over p-adic fields. These spectra interpolate between integral motivic cohomology (n=0), a connective version of algebraic K-theory (n=1), and the algebraic Brown-Peterson spectrum. We deduce that, over p-adic fields, the 2-complete BPGL<n> split over 2-complete BPGL<0>, implying that the slice spectral sequence for BPGL collapses. This is the first in a series of two papers investigating motivic invariants of p-adic fields, and it lays the groundwork for an understanding of the motivic Adams-Novikov spectral sequence over such base fields.
We establish a formal framework for Rogness homotopical Galois theory and adapt it to the context of motivic spaces and spectra. We discuss examples of Galois extensions between Eilenberg-MacLane motivic spectra and between the Hermitian and algebraic K-theory spectra.
We construct and study a t-structure on p-typical cyclotomic spectra and explain how to recover crystalline cohomology of smooth schemes over perfect fields using this t-structure. Our main tool is a new approach to p-typical cyclotomic spectra via objects we call p-typical topological Cartier modules. Using these, we prove that the heart of the cyclotomic t-structure is the full subcategory of derived V-complete objects in the abelian category of p-typical Cartier modules.
We compute some R-motivic stable homotopy groups. For $s - w leq 11$, we describe the motivic stable homotopy groups $pi_{s,w}$ of a completion of the R-motivic sphere spectrum. We apply the $rho$-Bockstein spectral sequence to obtain R-motivic Ext groups from the C-motivic Ext groups, which are well-understood in a large range. These Ext groups are the input to the R-motivic Adams spectral sequence. We fully analyze the Adams differentials in a range, and we also analyze hidden extensions by $rho$, 2, and $eta$. As a consequence of our computations, we recover Mahowald invariants of many low-dimensional classical stable homotopy elements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا