The form of timing residuals due to errors in pulsar spin period $P$ and its derivative $dot{P}$, in positions, as well as in proper motions, have been well presented for decades in the literature. However, the residual patterns due to errors in the pulsar acceleration have not been reported previously, while a pulsar in the galaxy or a globular cluster (GC) will be unavoidably accelerated. The coupling effect of the pulsar transverse acceleration and the R$rm{ddot{o}}$mer delay on timing residuals are simulated in this work. The results show that the residual due to the effect can be identified by the oscillation envelopes of the residuals. It is also shown that the amplitude of the residual due to the effect is usually relatively small, however, it may probably be observable for pulsars distributing in the vicinity of the core of a nearby GC.