No Arabic abstract
The cross sections and polarization components of the $tau$ leptons produced in the charged current induced quasielastic $ u_tau~(bar u_tau) - N$ scattering have been studied. The theoretical uncertainties arising due to the use of different vector form factors and the axial dipole mass in the axial vector form factor have been investigated. Due to the high mass of $tau$ lepton, the contributions from the term containing pseudoscalar and second class current form factors are non-negligible and contribute to the uncertainty in the cross section and polarization observables as these form factors are not well known. In view of the currently proposed experiments by DUNE, SHiP and DsTau collaborations to study the production of $tau$ lepton, an updated calculation of the cross sections and polarizations of tau leptons in the case of quasielastic production have been done and the numerical results have been presented along with a discussion of the theoretical uncertainties.
We study lepton flavour-violating interactions which could result in the $tau$-lepton production in the $ u_{mu}N$ scattering or in $mu to tau$ conversion on nucleons at high energies. Phenomenological bounds on the strength of $bar{tau} u_{mu}bar{q}q^{}$ interactions are extracted from the combined result of the NOMAD and CHORUS experiments on searching for $ u_{mu} - u_{tau}$ oscillations. Some of these bounds supersede limits from rare decays. We also propose a ``missing energy type experiment searching for $mu - tau$ conversion on nucleons. The experiment can be performed at a present accelerator or at a future neutrino factory.
The potential of performing a combined analysis of the strangeness-changing decays $tau^{-}to K_{S}pi^{-} u_{tau}$ and $tau^{-}to K^{-}eta u_{tau}$ for unveiling the $K^{*}(1410)$ resonance pole parameters is illustrated. Our study is carried out within the framework of Chiral Perturbation Theory, including resonances as explicit degrees of freedom. Resummation of final state interactions are considered through a dispersive parameterization of the required form factors. A considerable improvement in the determination of the pole position with mass $M_{K^{*}(1410)}=1304pm17$ MeV and width $Gamma_{K^{*}(1410)}=171pm62$ MeV is obtained.
Using a data set of 6.32 fb$^{-1}$ of $e^+ e^-$ annihilation data collected with the BESIII detector at center-of-mass energies between 4178 and 4226 MeV, we have measured the absolute branching fraction of the leptonic decay $D_s^+ to tau^+ u_{tau}$ via $tau^+ to e^+ u_e bar{ u}_{tau}$ to be $mathcal{B}_{D_s^+ to tau^+ u_{tau}}=(5.27pm0.10pm0.12)times10^{-2}$, where the first uncertainty is statistical and the second is systematic. Combining with $f_{D_s^+}$ from Lattice quantum chromodynamics calculations or the $|V_{cs}|$ from the CKMfitter group, we extract $|V_{cs}|=0.978pm0.009pm0.012$ and $f_{D_s^+}= (251.1pm2.4pm3.0)$ MeV, respectively. These results are the most precise to date. Combining our result with the world averages of $mathcal{B}_{D_s^+ to tau^+ u_{tau}}$ and $mathcal{B}_{D_s^+ to mu^+ u_{mu}}$, we obtain the ratio of the branching fractions $mathcal{B}_{D_s^+ to tau^+ u_{tau}} / mathcal{B}_{D_s^+ to mu^+ u_{mu}} = 9.72pm0.37$, which is consistent with the standard model prediction of lepton flavor universality.
We report the first measurement of the $tau$ lepton polarization in the decay ${bar B} rightarrow D^* tau^- {bar u_{tau}}$ as well as a new measurement of the ratio of the branching fractions $R(D^{*}) = mathcal{B}({bar B} rightarrow D^* tau^- {bar u_{tau}}) / mathcal{B}({bar B} rightarrow D^* ell^- {bar u_{ell}})$, where $ell^-$ denotes an electron or a muon, with the decays $tau^- rightarrow pi^- u_{tau}$ and $tau^- rightarrow rho^- u_{tau}$. We use the full data sample of $772 times 10^6$ $B{bar B}$ pairs accumulated with the Belle detector at the KEKB electron-positron collider. Our preliminary results, $R(D^*) = 0.276 pm 0.034{rm (stat.)} ^{+0.029} _{-0.026}{rm (syst.)}$ and $P_{tau} = -0.44 pm 0.47 {rm (stat.)} ^{+0.20} _{-0.17} {rm (syst.)}$, are consistent with the theoretical predictions of the Standard Model within $0.6$ standard deviation.
We evaluate long-distance electromagnetic (QED) contributions to $bar{B}{}^0 to D^+ tau^{-} bar{ u}_{tau}$ and $B^- to D^0 tau^{-} bar{ u}_{tau}$ relative to $bar{B}{}^0 to D^+ mu^{-} bar{ u}_{mu}$ and $B^- to D^0 mu^{-} bar{ u}_{mu}$, respectively, in the standard model. We point out that the QED corrections to the ratios $R(D^{+})$ and $R(D^{0})$ are not negligible, contrary to the expectation that radiative corrections are almost canceled out in the ratio of the two branching fractions. The reason is that long-distance QED corrections depend on the masses and relative velocities of the daughter particles. We find that theoretical predictions for $R(D^{+})^{tau/mu}$ and $R(D^{0})^{tau/mu}$ can be amplified by $sim4%$ and $sim3%$, respectively, for the soft-photon energy cut in range $20$-$40$ MeV.