No Arabic abstract
Applications of deep learning to automatic multitrack mixing are largely unexplored. This is partly due to the limited available data, coupled with the fact that such data is relatively unstructured and variable. To address these challenges, we propose a domain-inspired model with a strong inductive bias for the mixing task. We achieve this with the application of pre-trained sub-networks and weight sharing, as well as with a sum/difference stereo loss function. The proposed model can be trained with a limited number of examples, is permutation invariant with respect to the input ordering, and places no limit on the number of input sources. Furthermore, it produces human-readable mixing parameters, allowing users to manually adjust or refine the generated mix. Results from a perceptual evaluation involving audio engineers indicate that our approach generates mixes that outperform baseline approaches. To the best of our knowledge, this work demonstrates the first approach in learning multitrack mixing conventions from real-world data at the waveform level, without knowledge of the underlying mixing parameters.
Many audio processing tasks require perceptual assessment. The ``gold standard`` of obtaining human judgments is time-consuming, expensive, and cannot be used as an optimization criterion. On the other hand, automated metrics are efficient to compute but often correlate poorly with human judgment, particularly for audio differences at the threshold of human detection. In this work, we construct a metric by fitting a deep neural network to a new large dataset of crowdsourced human judgments. Subjects are prompted to answer a straightforward, objective question: are two recordings identical or not? These pairs are algorithmically generated under a variety of perturbations, including noise, reverb, and compression artifacts; the perturbation space is probed with the goal of efficiently identifying the just-noticeable difference (JND) level of the subject. We show that the resulting learned metric is well-calibrated with human judgments, outperforming baseline methods. Since it is a deep network, the metric is differentiable, making it suitable as a loss function for other tasks. Thus, simply replacing an existing loss (e.g., deep feature loss) with our metric yields significant improvement in a denoising network, as measured by subjective pairwise comparison.
We present a data-driven approach to automate audio signal processing by incorporating stateful third-party, audio effects as layers within a deep neural network. We then train a deep encoder to analyze input audio and control effect parameters to perform the desired signal manipulation, requiring only input-target paired audio data as supervision. To train our network with non-differentiable black-box effects layers, we use a fast, parallel stochastic gradient approximation scheme within a standard auto differentiation graph, yielding efficient end-to-end backpropagation. We demonstrate the power of our approach with three separate automatic audio production applications: tube amplifier emulation, automatic removal of breaths and pops from voice recordings, and automatic music mastering. We validate our results with a subjective listening test, showing our approach not only can enable new automatic audio effects tasks, but can yield results comparable to a specialized, state-of-the-art commercial solution for music mastering.
Audio-based multimedia retrieval tasks may identify semantic information in audio streams, i.e., audio concepts (such as music, laughter, or a revving engine). Conventional Gaussian-Mixture-Models have had some success in classifying a reduced set of audio concepts. However, multi-class classification can benefit from context window analysis and the discriminating power of deeper architectures. Although deep learning has shown promise in various applications such as speech and object recognition, it has not yet met the expectations for other fields such as audio concept classification. This paper explores, for the first time, the potential of deep learning in classifying audio concepts on User-Generated Content videos. The proposed system is comprised of two cascaded neural networks in a hierarchical configuration to analyze the short- and long-term context information. Our system outperforms a GMM approach by a relative 54%, a Neural Network by 33%, and a Deep Neural Network by 12% on the TRECVID-MED database
While deep neural networks have shown powerful performance in many audio applications, their large computation and memory demand has been a challenge for real-time processing. In this paper, we study the impact of scaling the precision of neural networks on the performance of two common audio processing tasks, namely, voice-activity detection and single-channel speech enhancement. We determine the optimal pair of weight/neuron bit precision by exploring its impact on both the performance and processing time. Through experiments conducted with real user data, we demonstrate that deep neural networks that use lower bit precision significantly reduce the processing time (up to 30x). However, their performance impact is low (< 3.14%) only in the case of classification tasks such as those present in voice activity detection.
With the development of deep learning and artificial intelligence, audio synthesis has a pivotal role in the area of machine learning and shows strong applicability in the industry. Meanwhile, significant efforts have been dedicated by researchers to handle multimodal tasks at present such as audio-visual multimodal processing. In this paper, we conduct a survey on audio synthesis and audio-visual multimodal processing, which helps understand current research and future trends. This review focuses on text to speech(TTS), music generation and some tasks that combine visual and acoustic information. The corresponding technical methods are comprehensively classified and introduced, and their future development trends are prospected. This survey can provide some guidance for researchers who are interested in the areas like audio synthesis and audio-visual multimodal processing.