In this paper, we investigate the double covering of modular $Gamma^{}_5 simeq A^{}_5$ group and derive all the modular forms of weight one for the first time. The modular forms of higher weights are also explicitly given by decomposing the direct products of weight-one forms. For the double covering group $Gamma^prime_5 simeq A^prime_5$, there exist two inequivalent two-dimensional irreducible representations, into which we can assign two right-handed neutrino singlets in the minimal seesaw model. Two concrete models with such a salient feature have been constructed to successfully explain lepton mass spectra and flavor mixing pattern. The allowed parameter space for these two minimal scenarios has been numerically explored, and analytically studied with some reasonable assumptions.