We study the low frequency spectra of complex Sachdev-Ye-Kitaev (SYK) models at general densities. The analysis applies also to SU($M$) magnets with random exchange at large $M$. The spectral densities are computed by numerical analysis of the saddle point equations on the real frequency ($omega$) axis at zero temperature ($T$). The asymptotic low $omega$ behaviors are found to be in excellent agreement with the scaling dimensions of irrelevant operators which perturb the conformally invariant critical states. Of possible experimental interest is our computation of the universal spin spectral weight of the SU($M$) magnets at low $omega$ and $T$: this includes a contribution from the time reparameterization mode, which is the boundary graviton of the holographic dual. This analysis is extended to a random $t$-$J$ model in a companion paper.
We present numerical solutions of the spectral functions of $t$-$J$ models with random and all-to-all exchange and global SU($M$) spin rotation symmetry. The solutions are obtained from the saddle-point equations of the large volume limit, followed by the large $M$ limit. These saddle point equations involve Greens functions for fractionalized spinons and holons carrying emergent U(1) gauge charges, obeying relations similar to those of the Sachdev-Ye-Kitaev (SYK) models. The low frequency spectral functions are compared with an analytic analysis of the operator scaling dimensions, with good agreement. We also compute the low frequency and temperature behavior of gauge-invariant observables: the electron Greens function, the local spin susceptibility and the optical conductivity; along with the temperature dependence of the d.c. resistivity. The time reparameterization soft mode (equivalent to the boundary graviton in holographically dual models of two-dimensional quantum gravity) makes important contributions to all observables, and provides a linear-in-temperature contribution to the d.c. resistivity.
The random matrix theory (RMT) can be used to classify both topological phases of matter and quantum chaos. We develop a systematic and transformative RMT to classify the quantum chaos in the colored Sachdev-Ye-Kitaev (SYK) model first introduced by Gross and Rosenhaus. Here we focus on the 2-colored case and 4-colored case with balanced number of Majorana fermion $N$. By identifying the maximal symmetries, the independent parity conservation sectors, the minimum (irreducible) Hilbert space, and especially the relevant anti-unitary and unitary operators, we show that the color degree of freedoms lead to novel quantum chaotic behaviours. When $N$ is odd, different symmetry operators need to be constructed to make the classifications complete. The 2-colored case only show 3-fold Wigner-Dyson way, and the 4-colored case show 10-fold generalized Wigner-Dyson way which may also have non-trivial edge exponents. We also study 2- and 4-colored hybrid SYK models which display many salient quantum chaotic features hidden in the corresponding pure SYK models. These features motivate us to develop a systematic RMT to study the energy level statistics of 2 or 4 un-correlated random matrix ensembles. The exact diagonalizations are performed to study both the bulk energy level statistics and the edge exponents and find excellent agreements with our exact maximal symmetry classifications. Our complete and systematic methods can be easily extended to study the generic imbalanced cases. They may be transferred to the classifications of colored tensor models, quantum chromodynamics with pairings across different colors, quantum black holes and interacting symmetry protected (or enriched) topological phases.
We study the original Sachdev-Ye (SY) model in its Majorana fermion representation which can be called the two indices Sachdev-Ye-Kitaev (SYK) model. Its advantage over the original SY model in the $ SU(M) $ complex fermion representation is that it need no local constraints, so a $1/M $ expansion can be more easily performed. Its advantage over the 4 indices SYK model is that it has only two site indices $ J_{ij} $ instead of four indices $ J_{ijkl} $, so it may fit the bulk string theory better. By performing a $1/M $ expansion at $ N=infty $, we show that a quantum spin liquid (QSL) state remains stable at a finite $ M $. The $ 1/M $ corrections are exactly marginal, so the system remains conformably invariant at any finite $ M $. The 4-point out of time correlation ( OTOC ) shows quantum chaos neither at $ N=infty $ at any finite $ M $, nor at $ M=infty $ at any finite $ N $. By looking at the replica off-diagonal channel, we find there is a quantum spin glass (QSG) instability at an exponentially suppressed temperature in $ M $. We work out a criterion for the two large numbers $ N $ and $ M $ to satisfy so that the QSG instability may be avoided. We speculate that at any finite $ N $, the quantum chaos appears at the order of $ 1/M^{0} $, which is the subleading order in the $ 1/M $ expansion. When the $ 1/N $ quantum fluctuations at any finite $ M $ are considered, from a general reparametrization symmetry breaking point of view, we argue that the eThis work may motivate future works to study the possible new gravity dual of the 2 indices SYK model.ffective action should still be described by the Schwarzian one, the OTOC shows maximal quantum chaos.
Periodically driven quantum matter can realize exotic dynamical phases. In order to understand how ubiquitous and robust these phases are, it is pertinent to investigate the heating dynamics of generic interacting quantum systems. Here we study the thermalization in a periodically-driven generalized Sachdev-Ye-Kitaev (SYK)-model, which realizes a crossover from a heavy Fermi liquid (FL) to a non-Fermi liquid (NFL) at a tunable energy scale. Developing an exact field theoretic approach, we determine two distinct regimes in the heating dynamics. While the NFL heats exponentially and thermalizes rapidly, we report that the presence of quasi-particles in the heavy FL obstructs heating and thermalization over comparatively long time scales. Prethermal high-frequency dynamics and possible experimental realizations of non-equilibrium SYK physics are discussed as well.
Given a class of $q$-local Hamiltonians, is it possible to find a simple variational state whose energy is a finite fraction of the ground state energy in the thermodynamic limit? Whereas product states often provide an affirmative answer in the case of bosonic (or qubit) models, we show that Gaussian states fail dramatically in the fermionic case, like for the Sachdev-Ye-Kitaev (SYK) models. This prompts us to propose a new class of wavefunctions for SYK models inspired by the variational coupled cluster algorithm. We introduce a static (0+0D) large-$N$ field theory to study the energy, two-point correlators, and entanglement properties of these states. Most importantly, we demonstrate a finite disorder-averaged approximation ratio of $r approx 0.62$ between the variational and ground state energy of SYK for $q=4$. Moreover, the variational states provide an exact description of spontaneous symmetry breaking in a related two-flavor SYK model.