Do you want to publish a course? Click here

Testing the chemical homogeneity of chemically tagged dissolved birth clusters

443   0   0.0 ( 0 )
 Added by Chloe M. Cheng
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Chemically tagging stars back to common formation sites in the Milky Way and establishing a high level of chemical homogeneity in these chemically tagged birth clusters is crucial for understanding the chemical and dynamical history of the Galactic disc. We constrain the intrinsic abundance scatter in 17 newly chemically tagged dissolved birth clusters found in the APOGEE survey by modelling APOGEE spectra as a one-dimensional function of initial stellar mass, performing forward modelling of the observed stellar spectra, then comparing the data and simulations using Approximate Bayesian Computation. We exemplify this method with the well-known open clusters M67, NGC 6819, and NGC 6791. We study 15 elements measured by APOGEE and find that, in general, we are able to obtain very strong constraints on the intrinsic abundance scatter of most elements in the chemically tagged birth clusters, with upper limits of $lesssim 0.02$ dex for C, $lesssim 0.03$ dex for O, Mn, and Fe, $lesssim 0.04$ dex for Si and Ni, and $lesssim 0.05$ dex for N, Mg, and Ca. While we find some evidence for a small amount of chemical inhomogeneity in the remaining elements (i.e. Na, Al, S, K, Ti, and V), we are still able to obtain similar or stronger limits compared to those found for open clusters, consistent with previous findings. By strongly constraining their level of chemical homogeneity, we can strengthen the statement that these groups of stars represent birth clusters, with promising implications for future chemical tagging studies.



rate research

Read More

Chemically tagging groups of stars born in the same birth cluster is a major goal of spectroscopic surveys. To investigate the feasibility of such strong chemical tagging, we perform a blind chemical tagging experiment on abundances measured from APOGEE survey spectra. We apply a density-based clustering algorithm to the eight dimensional chemical space defined by [Mg/Fe], [Al/Fe], [Si/Fe], [K/Fe], [Ti/Fe], [Mn/Fe], [Fe/H], and [Ni/Fe], abundances ratios which together span multiple nucleosynthetic channels. In a high quality sample of 182,538 giant stars, we detect twenty-one candidate clusters with more than fifteen members. Our candidate clusters are more chemically homogeneous than a population of non-member stars with similar [Mg/Fe] and [Fe/H], even in abundances not used for tagging. Group members are consistent with having the same age and fall along a single stellar-population track in logg vs. Teff space. Each groups members are distributed over multiple kpc, and the spread in their radial and azimuthal actions increases with age. We qualitatively reproduce this increase using N-body simulations of cluster dissolution in Galactic potentials that include transient winding spiral arms. Observing our candidate birth clusters with high-resolution spectroscopy in other wavebands to investigate their chemical homogeneity in other nucleosynthetic groups will be essential to confirming the efficacy of strong chemical tagging. Our initially spatially-compact but now widely dispersed candidate clusters will provide novel limits on chemical evolution and orbital diffusion in the Galactic disc, and constraints on star formation in loosely-bound groups.
111 - R. Lucchesi , C. Lardo , F. Primas 2020
We present the high-resolution spectroscopic analysis of two new extremely metal-poor stars (EMPS) candidates in the dwarf spheroidal galaxy Sextans. These targets were pre-selected from medium resolution spectra centered around the Ca II triplet in the near-infrared and followed-up at higher resolution with VLT/UVES. We confirm their low metallicities with [Fe/H]=-2.95 and [Fe/H]=-3.01, placing them among the most metal-poor stars known in Sextans. The abundances of 18 elements, including C, Na, the alpha-elements, Fe-peak, and neutron capture elements, are determined. In particular, we present the first measurements of Zn in a classical dwarf at extremely low metallicity. There has been previous hints of a large scatter in the abundance ratios of the Sextans stellar population around [Fe/H] -3 when compared to other galaxies. We took the opportunity of this work to re-analyse the full sample of EMPS and find a Milky-Way -like plateau and a normal dispersion at fixed metallicity.
114 - Michael J. Longo 2013
According to the cosmological principle, galaxy cluster sizes and cluster densities, when averaged over sufficiently large volumes of space, are expected to be constant everywhere, except for a slow variation with look-back time (redshift). Thus, average cluster sizes or correlation lengths provide a means of testing for homogeneity that is almost free of selection biases. Using ~10^6 galaxies from the SDSS DR7 survey, I show that regions of space separated by ~2 Gpc/h have the same average cluster size and density to 5 - 10 percent. I show that the average cluster size, averaged over many galaxies, remains constant to less than 10 percent from small redshifts out to redshifts of 0.25. The evolution of the cluster sizes with increasing redshift gives fair agreement when the same analysis is applied to the Millennium Simulation. However, the MS does not replicate the increase in cluster amplitudes with redshift seen in the SDSS data. This increase is shown to be caused by the changing composition of the SDSS sample with increasing redshifts. There is no evidence to support a model that attributes the SN Ia dimming to our happening to live in a large, nearly spherical void.
Well studied Open Clusters (OCs) in the Solar neighbourhood are used as reference objects to test galactic and stellar theories. For that purpose their chemical composition needs to be known with a high level of confidence. The aims of this work are (1) to determine accurate and precise abundances of 22 chemical species (from Na to Eu) in the Hyades, Praesepe and Rupecht 147 using a large number of stars at different evolutionary states, (2) to evaluate the level of chemical homogeneity of these OCs, (3) to compare their chemical signatures. We gathered $sim$800 high resolution and high S/N spectra of $sim$100 members in the three OCs, obtained with the latest memberships based on Gaia DR2 data. We build a pipeline which computes atmospheric parameters and strictly line-by-line differential abundances among twin stars in our sample, which allows us to reach a very high precision in the abundances (0.01-0.02 dex in most of the elements). We find large differences in the absolute abundances in some elements, which can be attributed to diffusion, NLTE effects or systematics in the analysis. For the three OCs, we find strong correlations in the differential abundances between different pairs of elements, which can be explained by some level of chemical inhomogeneity. We compare differential abundances of several stars from the Hyades and Praesepe tails: the stars that differ more in chemical abundances also have distinct kinematics, even though they have been identified as members of the tail. With this technique we find that the Hyades and Preasepe have the same chemical signature when G dwarfs and K giants are considered. Despite a certain level of inhomogeneity in each cluster, it is still possible to clearly distinguish the chemical signature of the older cluster Ruprecht~147 when compared to the others.
The chemical homogeneity of surviving stellar clusters contains important clues about interstellar medium (ISM) mixing efficiency, star formation, and the enrichment history of the Galaxy. Existing measurements in a handful of open clusters suggest homogeneity in several elements at the 0.03 dex level. Here we present (i) a new cluster member catalog based only on APOGEE radial velocities and Gaia-DR2 proper motions, (ii) improved abundance uncertainties for APOGEE cluster members, and (iii) the dependence of cluster homogeneity on Galactic and cluster properties, using abundances of eight elements from the APOGEE survey for ten high-quality clusters. We find that cluster homogeneity is uncorrelated with Galactocentric distance, |Z|, age, and metallicity. However, velocity dispersion, which is a proxy for cluster mass, is positively correlated with intrinsic scatter at relatively high levels of significance for [Ca/Fe] and [Mg/Fe]. We also see a possible positive correlation at a low level of significance for [Ni/Fe], [Si/Fe], [Al/Fe], and [Fe/H], while [Cr/Fe] and [Mn/Fe] are uncorrelated. The elements that show a correlation with velocity dispersion are those that are predominantly produced by core-collapse supernovae (CCSNe). However, the small sample size and relatively low correlation significance highlight the need for follow-up studies. If borne out by future studies, these findings would suggest a quantitative difference between the correlation lengths of elements produced predominantly by Type~Ia SNe versus CCSNe, which would have implications for Galactic chemical evolution models and the feasibility of chemical tagging.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا