Do you want to publish a course? Click here

Noncommutative correction to the entropy of BTZ black hole with GUP

153   0   0.0 ( 0 )
 Added by Francisco A. Brito
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the effect of noncommutativity and quantum corrections to the temperature and entropy of a BTZ black hole based on a Lorentzian distribution with the generalized uncertainty principle (GUP). To determine the Hawking radiation in the tunneling formalism we apply the Hamilton-Jacobi method by using the Wentzel-Kramers-Brillouin (WKB) approach. In the present study we have obtained logarithmic corrections to entropy due to the effect of noncommutativity and GUP. We also address the issue concerning stability of the non-commutative BTZ black hole by investigating its modified specific heat capacity.



rate research

Read More

In this paper we study through tunneling formalism, the effect of noncommutativity to Hawking radiation and the entropy of the noncommutative Schwarzschild black hole. In our model we have considered the noncommutativity implemented via the Lorentzian distribution. We obtain non-commutative corrections to the Hawking temperature using the Hamilton-Jacobi method and the Wentzel-Kramers-Brillouin (WKB) approximation. In addition, we found corrections of the logarithmic and other types due to noncommutativity and quantum corrections from the generalized uncertainty principle (GUP) for the entropy of the Schwarzschild black hole.
We reconstruct the complete fermionic orbit of the non-extremal BTZ black hole by acting with finite supersymmetry transformations. The solution satisfies the exact supergravity equations of motion to all orders in the fermonic expansion and the final result is given in terms of fermionic bilinears. By fluid/gravity correspondence, we derive linearized Navier-Stokes equations and a set of new differential equations from Rarita-Schwinger equation. We compute the boundary energy-momentum tensor and we interpret the result as a perfect fluid with a modified definition of fluid velocity. Finally, we derive the modified expression for the entropy of the black hole in terms of the fermionic bilinears.
We give a general derivation, for any static spherically symmetric metric, of the relation $T_h=frac{cal K}{2pi}$ connecting the black hole temperature ($T_h$) with the surface gravity ($cal K$), following the tunneling interpretation of Hawking radiation. This derivation is valid even beyond the semi classical regime i. e. when quantum effects are not negligible. The formalism is then applied to a spherically symmetric, stationary noncommutative Schwarzschild space time. The effects of back reaction are also included. For such a black hole the Hawking temperature is computed in a closed form. A graphical analysis reveals interesting features regarding the variation of the Hawking temperature (including corrections due to noncommutativity and back reaction) with the small radius of the black hole. The entropy and tunneling rate valid for the leading order in the noncommutative parameter are calculated. We also show that the noncommutative Bekenstein-Hawking area law has the same functional form as the usual one.
We present novel analytic hairy black holes with a flat base manifold in the (3+1)-dimensional Einstein SU(2)-Skyrme system with negative cosmological constant. We also construct (3+1)-dimensional black strings in the Einstein $SU(2)$-non linear sigma model theory with negative cosmological constant. The geometry of these black strings is a three-dimensional charged BTZ black hole times a line, without any warp factor. The thermodynamics of these configurations (and its dependence on the discrete hairy parameter) is analyzed in details. A very rich phase diagram emerges.
233 - Shingo Takeuchi 2021
Former part of this article is the proceedings for my talk on 2004.07474, which is a report on the issue in the title of this article. Later part is the detailed description of 2004.07474.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا