Do you want to publish a course? Click here

Subtitles to Segmentation: Improving Low-Resource Speech-to-Text Translation Pipelines

64   0   0.0 ( 0 )
 Added by David Wan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this work, we focus on improving ASR output segmentation in the context of low-resource language speech-to-text translation. ASR output segmentation is crucial, as ASR systems segment the input audio using purely acoustic information and are not guaranteed to output sentence-like segments. Since most MT systems expect sentences as input, feeding in longer unsegmented passages can lead to sub-optimal performance. We explore the feasibility of using datasets of subtitles from TV shows and movies to train better ASR segmentation models. We further incorporate part-of-speech (POS) tag and dependency label information (derived from the unsegmented ASR outputs) into our segmentation model. We show that this noisy syntactic information can improve model accuracy. We evaluate our models intrinsically on segmentation quality and extrinsically on downstream MT performance, as well as downstream tasks including cross-lingual information retrieval (CLIR) tasks and human relevance assessments. Our model shows improved performance on downstream tasks for Lithuanian and Bulgarian.



rate research

Read More

Speech-to-text translation (ST), which directly translates the source language speech to the target language text, has attracted intensive attention recently. However, the combination of speech recognition and machine translation in a single model poses a heavy burden on the direct cross-modal cross-lingual mapping. To reduce the learning difficulty, we propose COnSecutive Transcription and Translation (COSTT), an integral approach for speech-to-text translation. The key idea is to generate source transcript and target translation text with a single decoder. It benefits the model training so that additional large parallel text corpus can be fully exploited to enhance the speech translation training. Our method is verified on three mainstream datasets, including Augmented LibriSpeech English-French dataset, TED English-German dataset, and TED English-Chinese dataset. Experiments show that our proposed COSTT outperforms the previous state-of-the-art methods. The code is available at https://github.com/dqqcasia/st.
Simultaneous text translation and end-to-end speech translation have recently made great progress but little work has combined these tasks together. We investigate how to adapt simultaneous text translation methods such as wait-k and monotonic multihead attention to end-to-end simultaneous speech translation by introducing a pre-decision module. A detailed analysis is provided on the latency-quality trade-offs of combining fixed and flexible pre-decision with fixed and flexible policies. We also design a novel computation-aware latency metric, adapted from Average Lagging.
End-to-end text-to-speech (TTS) has shown great success on large quantities of paired text plus speech data. However, laborious data collection remains difficult for at least 95% of the languages over the world, which hinders the development of TTS in different languages. In this paper, we aim to build TTS systems for such low-resource (target) languages where only very limited paired data are available. We show such TTS can be effectively constructed by transferring knowledge from a high-resource (source) language. Since the model trained on source language cannot be directly applied to target language due to input space mismatch, we propose a method to learn a mapping between source and target linguistic symbols. Benefiting from this learned mapping, pronunciation information can be preserved throughout the transferring procedure. Preliminary experiments show that we only need around 15 minutes of paired data to obtain a relatively good TTS system. Furthermore, analytic studies demonstrated that the automatically discovered mapping correlate well with the phonetic expertise.
Speech-to-text translation (ST), which translates source language speech into target language text, has attracted intensive attention in recent years. Compared to the traditional pipeline system, the end-to-end ST model has potential benefits of lower latency, smaller model size, and less error propagation. However, it is notoriously difficult to implement such a model without transcriptions as intermediate. Existing works generally apply multi-task learning to improve translation quality by jointly training end-to-end ST along with automatic speech recognition (ASR). However, different tasks in this method cannot utilize information from each other, which limits the improvement. Other works propose a two-stage model where the second model can use the hidden state from the first one, but its cascade manner greatly affects the efficiency of training and inference process. In this paper, we propose a novel interactive attention mechanism which enables ASR and ST to perform synchronously and interactively in a single model. Specifically, the generation of transcriptions and translations not only relies on its previous outputs but also the outputs predicted in the other task. Experiments on TED speech translation corpora have shown that our proposed model can outperform strong baselines on the quality of speech translation and achieve better speech recognition performances as well.
105 - Yao-Fei Cheng , Hung-Shin Lee , 2021
The end-to-end architecture has made promising progress in speech translation (ST). However, the ST task is still challenging under low-resource conditions. Most ST models have shown unsatisfactory results, especially in the absence of word information from the source speech utterance. In this study, we survey methods to improve ST performance without using source transcription, and propose a learning framework that utilizes a language-independent universal phone recognizer. The framework is based on an attention-based sequence-to-sequence model, where the encoder generates the phonetic embeddings and phone-aware acoustic representations, and the decoder controls the fusion of the two embedding streams to produce the target token sequence. In addition to investigating different fusion strategies, we explore the specific usage of byte pair encoding (BPE), which compresses a phone sequence into a syllable-like segmented sequence. Due to the conversion of symbols, a segmented sequence represents not only pronunciation but also language-dependent information lacking in phones. Experiments conducted on the Fisher Spanish-English and Taigi-Mandarin drama corpora show that our method outperforms the conformer-based baseline, and the performance is close to that of the existing best method using source transcription.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا