Do you want to publish a course? Click here

A Survey of Machine Learning Techniques in Adversarial Image Forensics

94   0   0.0 ( 0 )
 Added by Ehsan Nowroozi
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Image forensic plays a crucial role in both criminal investigations (e.g., dissemination of fake images to spread racial hate or false narratives about specific ethnicity groups) and civil litigation (e.g., defamation). Increasingly, machine learning approaches are also utilized in image forensics. However, there are also a number of limitations and vulnerabilities associated with machine learning-based approaches, for example how to detect adversarial (image) examples, with real-world consequences (e.g., inadmissible evidence, or wrongful conviction). Therefore, with a focus on image forensics, this paper surveys techniques that can be used to enhance the robustness of machine learning-based binary manipulation detectors in various adversarial scenarios.



rate research

Read More

Machine learning techniques are currently used extensively for automating various cybersecurity tasks. Most of these techniques utilize supervised learning algorithms that rely on training the algorithm to classify incoming data into different categories, using data encountered in the relevant domain. A critical vulnerability of these algorithms is that they are susceptible to adversarial attacks where a malicious entity called an adversary deliberately alters the training data to misguide the learning algorithm into making classification errors. Adversarial attacks could render the learning algorithm unsuitable to use and leave critical systems vulnerable to cybersecurity attacks. Our paper provides a detailed survey of the state-of-the-art techniques that are used to make a machine learning algorithm robust against adversarial attacks using the computational framework of game theory. We also discuss open problems and challenges and possible directions for further research that would make deep machine learning-based systems more robust and reliable for cybersecurity tasks.
80 - Yusen Wu , Hao Chen , Xin Wang 2021
Adversarial attacks attempt to disrupt the training, retraining and utilizing of artificial intelligence and machine learning models in large-scale distributed machine learning systems. This causes security risks on its prediction outcome. For example, attackers attempt to poison the model by either presenting inaccurate misrepresentative data or altering the models parameters. In addition, Byzantine faults including software, hardware, network issues occur in distributed systems which also lead to a negative impact on the prediction outcome. In this paper, we propose a novel distributed training algorithm, partial synchronous stochastic gradient descent (ParSGD), which defends adversarial attacks and/or tolerates Byzantine faults. We demonstrate the effectiveness of our algorithm under three common adversarial attacks again the ML models and a Byzantine fault during the training phase. Our results show that using ParSGD, ML models can still produce accurate predictions as if it is not being attacked nor having failures at all when almost half of the nodes are being compromised or failed. We will report the experimental evaluations of ParSGD in comparison with other algorithms.
Cyber Physical Systems (CPS) are characterized by their ability to integrate the physical and information or cyber worlds. Their deployment in critical infrastructure have demonstrated a potential to transform the world. However, harnessing this potential is limited by their critical nature and the far reaching effects of cyber attacks on human, infrastructure and the environment. An attraction for cyber concerns in CPS rises from the process of sending information from sensors to actuators over the wireless communication medium, thereby widening the attack surface. Traditionally, CPS security has been investigated from the perspective of preventing intruders from gaining access to the system using cryptography and other access control techniques. Most research work have therefore focused on the detection of attacks in CPS. However, in a world of increasing adversaries, it is becoming more difficult to totally prevent CPS from adversarial attacks, hence the need to focus on making CPS resilient. Resilient CPS are designed to withstand disruptions and remain functional despite the operation of adversaries. One of the dominant methodologies explored for building resilient CPS is dependent on machine learning (ML) algorithms. However, rising from recent research in adversarial ML, we posit that ML algorithms for securing CPS must themselves be resilient. This paper is therefore aimed at comprehensively surveying the interactions between resilient CPS using ML and resilient ML when applied in CPS. The paper concludes with a number of research trends and promising future research directions. Furthermore, with this paper, readers can have a thorough understanding of recent advances on ML-based security and securing ML for CPS and countermeasures, as well as research trends in this active research area.
80 - Ang Li , Jiayi Guo , Huanrui Yang 2019
Deep learning has been widely applied in many computer vision applications, with remarkable success. However, running deep learning models on mobile devices is generally challenging due to the limitation of computing resources. A popular alternative is to use cloud services to run deep learning models to process raw data. This, however, imposes privacy risks. Some prior arts proposed sending the features extracted from raw data to the cloud. Unfortunately, these extracted features can still be exploited by attackers to recover raw images and to infer embedded private attributes. In this paper, we propose an adversarial training framework, DeepObfuscator, which prevents the usage of the features for reconstruction of the raw images and inference of private attributes. This is done while retaining useful information for the intended cloud service. DeepObfuscator includes a learnable obfuscator that is designed to hide privacy-related sensitive information from the features by performing our proposed adversarial training algorithm. The proposed algorithm is designed by simulating the game between an attacker who makes efforts to reconstruct raw image and infer private attributes from the extracted features and a defender who aims to protect user privacy. By deploying the trained obfuscator on the smartphone, features can be locally extracted and then sent to the cloud. Our experiments on CelebA and LFW datasets show that the quality of the reconstructed images from the obfuscated features of the raw image is dramatically decreased from 0.9458 to 0.3175 in terms of multi-scale structural similarity. The person in the reconstructed image, hence, becomes hardly to be re-identified. The classification accuracy of the inferred private attributes that can be achieved by the attacker is significantly reduced to a random-guessing level.
Constrained image splicing detection and localization (CISDL) is a newly proposed challenging task for image forensics, which investigates two input suspected images and identifies whether one image has suspected regions pasted from the other. In this paper, we propose a novel adversarial learning framework to train the deep matching network for CISDL. Our framework mainly consists of three building blocks: 1) the deep matching network based on atrous convolution (DMAC) aims to generate two high-quality candidate masks which indicate the suspected regions of the two input images, 2) the detection network is designed to rectify inconsistencies between the two corresponding candidate masks, 3) the discriminative network drives the DMAC network to produce masks that are hard to distinguish from ground-truth ones. In DMAC, atrous convolution is adopted to extract features with rich spatial information, the correlation layer based on the skip architecture is proposed to capture hierarchical features, and atrous spatial pyramid pooling is constructed to localize tampered regions at multiple scales. The detection network and the discriminative network act as the losses with auxiliary parameters to supervise the training of DMAC in an adversarial way. Extensive experiments, conducted on 21 generated testing sets and two public datasets, demonstrate the effectiveness of the proposed framework and the superior performance of DMAC.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا