We study the facility location games with candidate locations from a mechanism design perspective. Suppose there are n agents located in a metric space whose locations are their private information, and a group of candidate locations for building facilities. The authority plans to build some homogeneous facilities among these candidates to serve the agents, who bears a cost equal to the distance to the closest facility. The goal is to design mechanisms for minimizing the total/maximum cost among the agents. For the single-facility problem under the maximum-cost objective, we give a deterministic 3-approximation group strategy-proof mechanism, and prove that no deterministic (or randomized) strategy-proof mechanism can have an approximation ratio better than 3 (or 2). For the two-facility problem on a line, we give an anonymous deterministic group strategy-proof mechanism that is (2n-3)-approximation for the total-cost objective, and 3-approximation for the maximum-cost objective. We also provide (asymptotically) tight lower bounds on the approximation ratio.