In this work, we use a span-based approach for Vietnamese constituency parsing. Our method follows the self-attention encoder architecture and a chart decoder using a CKY-style inference algorithm. We present analyses of the experiment results of the comparison of our empirical method using pre-training models XLM-Roberta and PhoBERT on both Vietnamese datasets VietTreebank and NIIVTB1. The results show that our model with XLM-Roberta archived the significantly F1-score better than other pre-training models, VietTreebank at 81.19% and NIIVTB1 at 85.70%.
We propose a novel constituency parsing model that casts the parsing problem into a series of pointing tasks. Specifically, our model estimates the likelihood of a span being a legitimate tree constituent via the pointing score corresponding to the boundary words of the span. Our parsing model supports efficient top-down decoding and our learning objective is able to enforce structural consistency without resorting to the expensive CKY inference. The experiments on the standard English Penn Treebank parsing task show that our method achieves 92.78 F1 without using pre-trained models, which is higher than all the existing methods with similar time complexity. Using pre-trained BERT, our model achieves 95.48 F1, which is competitive with the state-of-the-art while being faster. Our approach also establishes new state-of-the-art in Basque and Swedish in the SPMRL shared tasks on multilingual constituency parsing.
Dependency parsing is needed in different applications of natural language processing. In this paper, we present a thorough error analysis for dependency parsing for the Vietnamese language, using two state-of-the-art parsers: MSTParser and MaltParser. The error analysis results provide us insights in order to improve the performance of dependency parsing for the Vietnamese language.
Most recently, there has been significant interest in learning contextual representations for various NLP tasks, by leveraging large scale text corpora to train large neural language models with self-supervised learning objectives, such as Masked Language Model (MLM). However, based on a pilot study, we observe three issues of existing general-purpose language models when they are applied to text-to-SQL semantic parsers: fail to detect column mentions in the utterances, fail to infer column mentions from cell values, and fail to compose complex SQL queries. To mitigate these issues, we present a model pre-training framework, Generation-Augmented Pre-training (GAP), that jointly learns representations of natural language utterances and table schemas by leveraging generation models to generate pre-train data. GAP MODEL is trained on 2M utterance-schema pairs and 30K utterance-schema-SQL triples, whose utterances are produced by generative models. Based on experimental results, neural semantic parsers that leverage GAP MODEL as a representation encoder obtain new state-of-the-art results on both SPIDER and CRITERIA-TO-SQL benchmarks.
We introduce a generic seq2seq parsing framework that casts constituency parsing problems (syntactic and discourse parsing) into a series of conditional splitting decisions. Our parsing model estimates the conditional probability distribution of possible splitting points in a given text span and supports efficient top-down decoding, which is linear in number of nodes. The conditional splitting formulation together with efficient beam search inference facilitate structural consistency without relying on expensive structured inference. Crucially, for discourse analysis we show that in our formulation, discourse segmentation can be framed as a special case of parsing which allows us to perform discourse parsing without requiring segmentation as a pre-requisite. Experiments show that our model achieves good results on the standard syntactic parsing tasks under settings with/without pre-trained representations and rivals state-of-the-art (SoTA) methods that are more computationally expensive than ours. In discourse parsing, our method outperforms SoTA by a good margin.
We present GraPPa, an effective pre-training approach for table semantic parsing that learns a compositional inductive bias in the joint representations of textual and tabular data. We construct synthetic question-SQL pairs over high-quality tables via a synchronous context-free grammar (SCFG) induced from existing text-to-SQL datasets. We pre-train our model on the synthetic data using a novel text-schema linking objective that predicts the syntactic role of a table field in the SQL for each question-SQL pair. To maintain the models ability to represent real-world data, we also include masked language modeling (MLM) over several existing table-and-language datasets to regularize the pre-training process. On four popular fully supervised and weakly supervised table semantic parsing benchmarks, GraPPa significantly outperforms RoBERTa-large as the feature representation layers and establishes new state-of-the-art results on all of them.