Do you want to publish a course? Click here

Deep-learning interatomic potential for irradiation damage simulations in MoS2 with ab initial accuracy

80   0   0.0 ( 0 )
 Added by Wang Hao
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Potentials that could accurately describe the irradiation damage processes are highly desired to figure out the atomic-level response of various newly-discovered materials under irradiation environments. In this work, we introduce a deep-learning interatomic potential for monolayer MoS2 by combining all-electron calculations, an active-learning sampling method and a hybrid deep-learning model. This potential could not only give an overall good performance on the predictions of near-equilibrium material properties including lattice constants, elastic coefficients, energy stress curves, phonon spectra, defect formation energy and displacement threshold, but also reproduce the ab initial irradiation damage processes with high quality. Further irradiation simulations indicate that one single highenergy ion could generate a large nanopore with a diameter of more than 2 nm, or a series of multiple nanopores, which is qualitatively verified by the subsequent 500 keV Au+ ion irradiation experiments. This work provides a promising and feasible approach to simulate irradiation effects in enormous newly-discovered materials with unprecedented accuracy.



rate research

Read More

173 - L. Tang , Z. J. Yang , T. Q. Wen 2020
An interatomic potential for Al-Tb alloy around the composition of Al90Tb10 was developed using the deep neural network (DNN) learning method. The atomic configurations and the corresponding total potential energies and forces on each atom obtained from ab initio molecular dynamics (AIMD) simulations are collected to train a DNN model to construct the interatomic potential for Al-Tb alloy. We show the obtained DNN model can well reproduce the energies and forces calculated by AIMD. Molecular dynamics (MD) simulations using the DNN interatomic potential also accurately describe the structural properties of Al90Tb10 liquid, such as the partial pair correlation functions (PPCFs) and the bond angle distributions, in comparison with the results from AIMD. Furthermore, the developed DNN interatomic potential predicts the formation energies of crystalline phases of Al-Tb system with the accuracy comparable to ab initio calculations. The structure factor of Al90Tb10 metallic glass obtained by MD simulation using the developed DNN interatomic potential is also in good agreement with the experimental X-ray diffraction data.
We propose a hybrid scheme that interpolates smoothly the Ziegler-Biersack-Littmark (ZBL) screened nuclear repulsion potential with a newly developed deep learning potential energy model. The resulting DP-ZBL model can not only provide overall good performance on the predictions of near-equilibrium material properties but also capture the right physics when atoms are extremely close to each other, an event that frequently happens in computational simulations of irradiation damage events. We applied this scheme to the simulation of the irradiation damage processes in the face-centered-cubic aluminium system, and found better descriptions in terms of the defect formation energy, evolution of collision cascades, displacement threshold energy, and residual point defects, than the widely-adopted ZBL modified embedded atom method potentials and its variants. Our work provides a reliable and feasible scheme to accurately simulate the irradiation damage processes and opens up new opportunities to solve the predicament of lacking accurate potentials for enormous newly-discovered materials in the irradiation effect field.
141 - Gabriele C. Sosso 2012
GeTe is a prototypical phase change material of high interest for applications in optical and electronic non-volatile memories. We present an interatomic potential for the bulk phases of GeTe, which is created using a neural network (NN) representation of the potential-energy surface obtained from reference calculations based on density functional theory. It is demonstrated that the NN potential provides a close to ab initio quality description of a number of properties of liquid, crystalline and amorphous GeTe. The availability of a reliable classical potential allows addressing a number of issues of interest for the technological applications of phase change materials, which are presently beyond the capability of first principles molecular dynamics simulations.
We introduce a Gaussian approximation potential (GAP) for atomistic simulations of liquid and amorphous elemental carbon. Based on a machine-learning representation of the density-functional theory (DFT) potential-energy surface, such interatomic potentials enable materials simulations with close-to DFT accuracy but at much lower computational cost. We first determine the maximum accuracy that any finite-range potential can achieve in carbon structures; then, using a novel hierarchical set of two-, three-, and many-body structural descriptors, we construct a GAP model that can indeed reach the target accuracy. The potential yields accurate energetic and structural properties over a wide range of densities; it also correctly captures the structure of the liquid phases, at variance with state-of-the-art empirical potentials. Exemplary applications of the GAP model to surfaces of diamond-like tetrahedral amorphous carbon (ta-C) are presented, including an estimate of the amorphous materials surface energy, and simulations of high-temperature surface reconstructions (graphitization). The new interatomic potential appears to be promising for realistic and accurate simulations of nanoscale amorphous carbon structures.
We describe the development of a new object kinetic Monte Carlo code where the elementary defect objects are off-lattice atomistic configurations. Atomic-level transitions are used to transform and translate objects, to split objects and to merge them together. This gradually constructs a database of atomic configurations -- a set of relevant defect objects and their possible events generated on-the-fly. Elastic interactions are handled within objects with empirical potentials at short distances, and between spatially distinct objects using the dipole tensor formalism. The model is shown to evolve mobile interstitial clusters in tungsten faster than an equivalent molecular dynamics simulation, even at elevated temperatures. We apply the model to the evolution of complex defects generated using molecular dynamics simulations of primary radiation damage in tungsten. We show that we can evolve defect structures formed in cascade simulations to experimentally observable timescales of seconds while retaining atomistic detail. We conclude that the first few nanoseconds of simulation following cascade initiation would be better performed using molecular dynamics, as this will capture some of the near-temperature-independent evolution of small highly-mobile interstitial clusters. We also conclude that, for the 20keV PKA cascades annealing simulations considered here, internal relaxations of sessile objects difficult to capture using conventional object KMC with idealised object geometries establish the conditions for long timescale evolution.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا