Do you want to publish a course? Click here

Berezinskii-Kosterlitz-Thouless transitions in two-dimensional lattice SO($N_c$) gauge theories with two scalar flavors

189   0   0.0 ( 0 )
 Added by Alessio Franchi
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the phase diagram and critical behavior of a two-dimensional lattice SO($N_c$) gauge theory ($N_c ge 3$) with two scalar flavors, obtained by partially gauging a maximally O($2N_c$) symmetric scalar model. The model is invariant under local SO($N_c$) and global O(2) transformations. We show that, for any $N_c ge 3$, it undergoes finite-temperature Berezinskii-Kosterlitz-Thouless (BKT) transitions, associated with the global Abelian O(2) symmetry. The transition separates a high-temperature disordered phase from a low-temperature spin-wave phase where correlations decay algebraically (quasi-long range order). The critical properties at the finite-temperature BKT transition and in the low-temperature spin-wave phase are determined by means of a finite-size scaling analysis of Monte Carlo data.



rate research

Read More

We consider two-dimensional lattice SU($N_c$) gauge theories with $N_f$ real scalar fields transforming in the adjoint representation of the gauge group and with a global O($N_f$) invariance. Focusing on systems with $N_fge 3$, we study their zero-temperature limit, to understand under which conditions a continuum limit exists, and to investigate the nature of the associated quantum field theory. Extending previous analyses, we address the role that the gauge-group representation and the quartic scalar potential play in determining the nature of the continuum limit (when it exists). Our results further corroborate the conjecture that the continuum limit of two-dimensional lattice gauge models with multiflavor scalar fields, when it exists, is associated with a $sigma$ model defined on a symmetric space that has the same global symmetry as the lattice model.
We consider three-dimensional lattice SU($N_c$) gauge theories with multiflavor ($N_f>1$) scalar fields in the adjoint representation. We investigate their phase diagram, identify the different Higgs phases with their gauge-symmetry pattern, and determine the nature of the transition lines. In particular, we study the role played by the quartic scalar potential and by the gauge-group representation in determining the Higgs phases and the global and gauge symmetry-breaking patterns characterizing the different transitions. The general arguments are confirmed by numerical analyses of Monte Carlo results for two representative models that are expected to have qualitatively different phase diagrams and Higgs phases. We consider the model with $N_c = 3$, $N_f=2$ and with $N_c=2$, $N_f= 4$. This second case is interesting phenomenologically to describe some features of cuprate superconductors.
82 - H Chamati , S Romano 2007
We have considered two classical lattice-gas models, consisting of particles that carry multicomponent magnetic momenta, and associated with a two-dimensional square lattices; each site can host one particle at most, thus implicitly allowing for hard-core repulsion; the pair interaction, restricted to nearest neighbors, is ferromagnetic and involves only two components. The case of zero chemical potential has been investigated by Grand--Canonical Monte Carlo simulations; the fluctuating occupation numbers now give rise to additional fluid-like observables in comparison with the usual saturated--lattice situation; these were investigated and their possible influence on the critical behaviour was discussed. Our results show that the present model supports a Berezinskii-Kosterlitz-Thouless phase transition with a transition temperature lower than that of the saturated lattice counterpart due to the presence of ``vacancies; comparisons were also made with similar models studied in the literature.
82 - A. Costa , M. B. Sturla 2020
In this Letter we will show that, in the presence of a properly modulated Dzyaloshinskii-Moriya (DM) interaction, a $U(1)$ vortex-antivortex lattice appears at low temperatures for a wide range of the DM interaction. Even more, in the region dominated by the exchange interaction, a standard BKT transition occurs. In the opposite regime, the one dominated by the DM interaction, a kind of inverse BKT transition (iBKT) takes place. As temperature rises, the vortex-antivortex lattice starts melting by annihilation of pairs of vortex-antivortex, in a sort of inverse BKT transition.
We address the interplay between global and local gauge nonabelian symmetries in lattice gauge theories with multicomponent scalar fields. We consider two-dimensional lattice scalar nonabelian gauge theories with a local SO(Nc) (Nc >= 3) and a global O(Nf) invariance, obtained by partially gauging a maximally O(Nf x Nc)-symmetric multicomponent scalar model. Correspondingly, the scalar fields belong to the coset S(Nf Nc-1)/SO(Nc), where S(N) is the N-dimensional sphere. In agreement with the Mermin-Wagner theorem, these lattice SO(Nc) gauge models with Nf >= 3 do not have finite-temperature transitions related to the breaking of the global nonabelian O(Nf) symmetry. However, in the zero-temperature limit they show a critical behavior characterized by a correlation length that increases exponentially with the inverse temperature, similarly to nonlinear O(N) sigma models. Their universal features are investigated by numerical finite-size scaling methods. The results show that the asymptotic low-temperature behavior belongs to the universality class of the two-dimensional RP(Nf-1) model.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا