Optimal Transmit Power and Flying Location for UAV Covert Wireless Communications


Abstract in English

This paper jointly optimizes the flying location and wireless communication transmit power for an unmanned aerial vehicle (UAV) conducting covert operations. This is motivated by application scenarios such as military ground surveillance from airborne platforms, where it is vital for a UAVs signal transmission to be undetectable by those within the surveillance region. Specifically, we maximize the communication quality to a legitimate ground receiver outside the surveillance region, subject to: a covertness constraint, a maximum transmit power constraint, and a physical location constraint determined by the required surveillance quality. We provide an explicit solution to the optimization problem for one of the most practical constraint combinations. For other constraint combinations, we determine feasible regions for flight, that can then be searched to establish the UAVs optimal location. In many cases, the 2-dimensional optimal location is achieved by a 1-dimensional search. We discuss two heuristic approaches to UAV placement, and show that in some cases they are able to achieve close to optimal, but that in other cases significant gains can be achieved by employing our developed solutions.

Download