No Arabic abstract
This paper jointly optimizes the flying location and wireless communication transmit power for an unmanned aerial vehicle (UAV) conducting covert operations. This is motivated by application scenarios such as military ground surveillance from airborne platforms, where it is vital for a UAVs signal transmission to be undetectable by those within the surveillance region. Specifically, we maximize the communication quality to a legitimate ground receiver outside the surveillance region, subject to: a covertness constraint, a maximum transmit power constraint, and a physical location constraint determined by the required surveillance quality. We provide an explicit solution to the optimization problem for one of the most practical constraint combinations. For other constraint combinations, we determine feasible regions for flight, that can then be searched to establish the UAVs optimal location. In many cases, the 2-dimensional optimal location is achieved by a 1-dimensional search. We discuss two heuristic approaches to UAV placement, and show that in some cases they are able to achieve close to optimal, but that in other cases significant gains can be achieved by employing our developed solutions.
In this paper, we investigate the optimal design of a wireless-powered covert communication (WP-CC) system, in which a probabilistic accumulate-then-transmit (ATT) protocol is proposed to maximize the communication covertness subject to a quality-of-service (QoS) requirement on communication. Specifically, in the considered WP-CC system, a full-duplex (FD) receiver transmits artificial noise (AN) to simultaneously charge an energy-constrained transmitter and to confuse a wardens detection on the transmitters communication activity. With the probabilistic ATT protocol, the transmitter sends its information with a prior probability, i.e., $p$, conditioned on the available energy being sufficient. Our analysis shows that the probabilistic ATT protocol can achieve higher covertness than the traditional ATT protocol with $p=1$. In order to facilitate the optimal design of the WP-CC system, we also derive the wardens minimum detection error probability and characterize the effective covert rate from the transmitter to the receiver to quantify the communication covertness and quality, respectively. The derived analytical results facilitate the joint optimization of the probability $p$ and the information transmit power. We further present the optimal design of a cable-powered covert communication (CP-CC) system as a benchmark for comparison. Our simulation shows that the proposed probabilistic ATT protocol (with a varying $p$) can achieve the covertness upper bound determined by the CP-CC system, while the traditional ATT protocol (with $p=1$) cannot, which again confirms the benefits brought by the proposed probabilistic ATT in covert communications.
In this paper, the problem of unmanned aerial vehicle (UAV) deployment, power allocation, and bandwidth allocation is investigated for a UAV-assisted wireless system operating at terahertz (THz) frequencies. In the studied model, one UAV can service ground users using the THz frequency band. However, the highly uncertain THz channel will introduce new challenges to the UAV location, user power, and bandwidth allocation optimization problems. Therefore, it is necessary to design a novel framework to deploy UAVs in the THz wireless systems. This problem is formally posed as an optimization problem whose goal is to minimize the total delays of the uplink and downlink transmissions between the UAV and the ground users by jointly optimizing the deployment of the UAV, the transmit power and the bandwidth of each user. The communication delay is crucial for emergency communications. To tackle this nonconvex delay minimization problem, an alternating algorithm is proposed while iteratively solving three subproblems: location optimization subproblem, power control subproblem, and bandwidth allocation subproblem. Simulation results show that the proposed algorithm can reduce the transmission delay by up to $59.3%$, $49.8%$ and $75.5%$ respectively compared to baseline algorithms that optimize only UAV location, bandwidth allocation or transmit power control.
Radiative wireless power transfer (WPT) is a promising technology to provide cost-effective and real-time power supplies to wireless devices. Although radiative WPT shares many similar characteristics with the extensively studied wireless information transfer or communication, they also differ significantly in terms of design objectives, transmitter/receiver architectures and hardware constraints, etc. In this article, we first give an overview on the various WPT technologies, the historical development of the radiative WPT technology and the main challenges in designing contemporary radiative WPT systems. Then, we focus on discussing the new communication and signal processing techniques that can be applied to tackle these challenges. Topics discussed include energy harvester modeling, energy beamforming for WPT, channel acquisition, power region characterization in multi-user WPT, waveform design with linear and non-linear energy receiver model, safety and health issues of WPT, massive MIMO (multiple-input multiple-output) and millimeter wave (mmWave) enabled WPT, wireless charging control, and wireless power and communication systems co-design. We also point out directions that are promising for future research.
Covert communications enable a transmitter to send information reliably in the presence of an adversary, who looks to detect whether the transmission took place or not. We consider covert communications over quasi-static block fading channels, where users suffer from channel uncertainty. We investigate the adversary Willies optimal detection performance in two extreme cases, i.e., the case of perfect channel state information (CSI) and the case of channel distribution information (CDI) only. It is shown that in the large detection error regime, Willies detection performances of these two cases are essentially indistinguishable, which implies that the quality of CSI does not help Willie in improving his detection performance. This result enables us to study the covert transmission design without the need to factor in the exact amount of channel uncertainty at Willie. We then obtain the optimal and suboptimal closed-form solution to the covert transmission design. Our result reveals fundamental difference in the design between the case of quasi-static fading channel and the previously studied case of non-fading AWGN channel.
This paper proposes a tractable solution for integrating non-orthogonal multiple access (NOMA) into massive machine-type communications (mMTC) to increase the uplink connectivity. Multiple transmit power levels are provided at the user end to enable open-loop power control, which is absent from the traditional uplink NOMA with the fixed transmit power. The basics of this solution are firstly presented to analytically show the inherent performance gain in terms of the average arrival rate (AAR). Then, a practical framework based on a novel power map is proposed to associate a set of well-designed transmit power levels with each geographical region for handling the no instantaneous channel state information problem. Based on this framework, the semi-grant-free (semi-GF) transmission with two practical protocols is introduced to enhance the connectivity, which has higher AAR than both the conventional grand-based and GF transmissions. When the number of active GF devices in mMTC far exceeds the available resource blocks, the corresponding AAR tends to zero. To solve this problem, user barring techniques are employed into the semi-GF transmission to stable the traffic flow and thus increase the AAR. Lastly, promising research directions are discussed for improving the proposed networks.