Do you want to publish a course? Click here

Electric directional steering of cathodoluminescence from graphene-based hydrid nanostructures

144   0   0.0 ( 0 )
 Added by Alessandro Ciattoni
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Controlling directional emission of nanophotonic radiation sources is fundamental to tailor radiation-matter interaction and to conceive highly efficient nanophotonic devices for on-chip wireless communication and information processing. Nanoantennas coupled to quantum emitters have proven to be very efficient radiation routers, while electrical control of unidirectional emission has been achieved through inelastic tunneling of electrons. Here we prove that the radiation emitted from the interaction of a high-energy electron beam with a graphene-nanoparticle composite has beaming directions which can be made to continuously span the full circle even through small variations of the graphene Fermi energy. Emission directionality stems from the interference between the double cone shaped electron transition radiation and the nanoparticle dipolar diffraction radiation. Tunability is enabled since the interference is ruled by the nanoparticle dipole moment whose amplitude and phase are driven by the hybrid plasmonic resonances of the composite and the absolute phase of the graphene plasmonic polariton launched by the electron, respectively. The flexibility of our method provides a way to exploit graphene plasmon physics to conceive improved nanosources with ultrafast reconfigurable radiation patterns.

rate research

Read More

Spin and angular momenta of light are important degrees of freedom in nanophotonics which control light propagation, optical forces and information encoding. Typically, optical angular momentum is generated using q-plates or spatial light modulators. Here, we show that graphene-supported plasmonic nanostructures with broken rotational symmetry provide a surprising spin to orbital angular momentum conversion, which can be continuously controlled by changing the electrochemical potential of graphene. Upon resonant illumination by a circularly polarized plane wave, a polygonal array of indium-tin-oxide nanoparticles on a graphene sheet generates scattered field carrying electrically-tunable orbital angular momentum. This unique photonic spin-orbit coupling occurs due to the strong coupling of graphene plasmon polaritons and localised surface plasmons of the nanoparticles and leads to the controlled directional excitation of graphene plasmons. The tuneable spin-orbit conversion pave the way to high-rate information encoding in optical communications, electric steering functionalities in optical tweezers, and nanorouting of higher-dimensional entangled photon states.
A full (2$pi$) phase modulation is critical for efficient wavefront manipulation. In this article, a metasurface based on graphene long/short-strip resonators is used to implement a dynamic 2$pi$ phase modulation by applying different voltages to different graphene resonators. The configuration is found to have high reflection efficiency (minimum 56%) and has a full phase modulation in a wide frequency range. Terahertz (THz) beam steering as large as 120 degrees ($pm60^circ$) is demonstrated in a broad frequency range (1.2 to 1.9 THz) by changing the Fermi levels of different graphene resonators accordingly. This metasurface can provide a new platform for effectively manipulating THz waves.
We put forward a concept to create highly collimated, non-dispersive electron beams in pseudo-relativistic Dirac materials such as graphene or topological insulator surfaces. Combining negative refraction and Klein collimation at a parabolic pn junction, the proposed lens generates beams, as narrow as the focal length, that stay focused over scales of several microns and can be steered by a magnetic field without losing collimation. We demonstrate the lens capabilities by applying it to two paradigmatic settings of graphene electron optics: We propose a setup for observing high-resolution angle-dependent Klein tunneling, and, exploiting the intimate quantum-to-classical correspondence of these focused electron waves, we consider high-fidelity transverse magnetic focusing accompanied by simulations for current mapping through scanning gate microscopy. Our proposal opens up new perspectives for next-generation graphene electron optics experiments.
We propose a scheme to directionally couple light into graphene plasmons by placing a graphene sheet on a magneto-optical substrate. When a magnetic field is applied parallel to the surface, the graphene plasmon dispersion relation becomes asymmetric in the forward and backward directions. It is possible to achieve unidirectional excitation of graphene plasmons with normally incident illumination by applying a grating to the substrate. The directionality can be actively controlled by electrically gating the graphene, or by varying the magnetic bias. This scheme may have applications in graphene-based opto-electronics and sensing.
Graphene is a unique material to study fundamental limits of plasmonics. Apart from the ultimate single-layer thickness, its carrier concentration can be tuned by chemical doping or applying an electric field. In this manner the electrodynamic properties of graphene can be varied from highly conductive to dielectric. Graphene supports strongly confined, propagating surface plasmon-polaritons (SPPs) in a broad spectral range from terahertz to mid-infrared frequencies. It also possesses a strong magneto-optical response and thus provides complimentary architectures to conventional magneto-plasmonics based on magneto-optically active metals or dielectrics. Despite of a large number of review articles devoted to plasmonic properties and applications of graphene, little is known about graphene magneto-plasmonics and topological effects in graphene-based nanostructures, which represent the main subject of this review. We discuss several strategies to enhance plasmonic effects in topologically distinct closed surface landscapes, i.e. graphene nanotubes, cylindric nanocavities and toroidal nanostructures. A novel phenomenon of the strongly asymmetric SPP propagation on chiral meta-structures and fundamental relations between structural and plasmonic topological indices are reviewed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا